Hyper-pigmentation conditions may develop due to erroneous melanogenesis cascade which leads to excess melanin production. Recently, inhibition of tyrosinase is the main focus of investigation as it majorly contributes to melanin production. This inhibition property can be exploited in medicine, agriculture, and in cosmetics. Present study aims to find a natural and safe alternative molecule as tyrosinase inhibitor. In this study, human tyrosinase enzyme was modelled due to unavailability of its crystal structure to look into the degree of efficacy of glabridin and its 15 derivatives as tyrosinase inhibitor. Docking was performed by Autodock Vina at the catalytic core enzyme. Glabridin effects on melanoma cell lines was also elucidated by analysing cytotoxicity and effect on melanin production. Computational ADME analysis was done by SwissADME. Molecular dynamic simulation was also performed to further evaluate the interaction profile of these molecules and kojic acid (positive inhibitor) with respect to apo protein. Notably, four derivatives 5′-formylglabridin, glabridin dimer, 5′-prenyl glabridin and R-glabridin exhibited better binding affinity than glabridin. Glabridin effectively inhibited melanin production in a dose dependent manner. Among these, 5′-formylglabridin displayed highest binding affinity with docking score − 9.2 kcal/mol. Molecular properties and bioactivity analysis by Molinspiration web server and by SwissADME also presented these molecules as potential drug candidates. The study explores the understanding for the development of suitable tyrosinase inhibitor/s for the prevention of hyperpigmentation. However, a detailed in vivo study is required for glabridin derivatives to suggest these molecules as anti-melanogenic compound. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13596-022-00640-8.
Objective Hyper-pigmentation conditions may develop due to erroneous melanogenesis cascade which leads to excess melanin production. Recently, inhibition of tyrosinase is the main focus of investigation as it majorly contributes to melanin production. This inhibition property can be exploited in medicine, agriculture, and in cosmetics. Present study aims to find a natural and safe alternative molecule as tyrosinase inhibitor. Methods In this study, human tyrosinase enzyme was modelled due to unavailability of its crystal structure to look into the degree of efficacy of glabridin and its 15 derivatives as tyrosinase inhibitor. Docking was performed by Autodock Vina at the catalytic core enzyme. Glabridin effects on melanoma cell lines was also elucidated by analysing cytotoxicity and effect on melanin production. Computational ADME analysis was done by SwissADME. Molecular dynamic simulation was also performed to further evaluate the interaction profile of these molecules and kojic acid (positive inhibitor) with respect to apo protein. Results Notably, four derivatives 5’-formylglabridin, glabridin dimer, 5’-prenyl glabridin and R-glabridin exhibited better binding affinity than glabridin. Glabridin effectively inhibited melanin production in a dose dependent manner. Among these, 5’-formylglabridin displayed highest binding affinity with docking score – 9.2 kcal/mol. Molecular properties and bioactivity analysis by Molinspiration web server and by SwissADME also presented these molecules as potential drug candidates. Conclusion The study explores the understanding for the development of suitable tyrosinase inhibitor/s for the prevention of hyperpigmentation. However, a detailed in vivo study is required for glabridin derivatives to suggest these molecules as anti-melanogenic compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.