Electric power distribution systems have been heavily engaged in evolutionary changes toward effective usage of distribution networks for dependability, quality, and improvement of services delivered to customers throughout the years. This was accomplished via a procedure known as reconfiguration. Several strategies have been offered by various authors for successful distribution feeder reconfiguration with a novel optimization method. As a result, this work developed a Discrete Particle Swarm Optimization (DPSO) method to address the issue of distribution system feeder reconfiguration during both steady-state and dynamic power system operations. In a dynamic state, the power demand and generation required are continually changing over time, and the DPSO algorithm finds a new set of solutions to fulfill the power demand. Many network topologies are investigated for the dynamic operation. The feeder reconfiguration single-objective optimization problem was transformed into a multi-objective optimization problem by taking into account both real power loss reduction and distribution system load balancing. The suggested technique was verified using various IEEE 16, 33, and 69 bus standard test distribution systems to determine the efficiency of the developed DPSO algorithm. The simulation findings reveal that DPSO outperforms other optimization algorithms in terms of actual power loss reduction and load balancing, while solving multi-objective distribution system feeder reconfiguration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.