Current ultrasound approaches practice probe for diagnosing instantaneous abdominal aortic aneurysms (AAA) based on arterial tissue deformation. However, tracking the progression of potential aneurysms, and predicting the risk of rupture is based on the diameter of the aneurysm and is still an insufficient method: Larger diameter aneurysms do not always lead to ruptures, and smaller diameter aneurysms unexpectedly rupture. In order to improve diagnostic accuracy of ultrasound imaging techniques, this paper presents geometric analyses of patient-specific instant deformations as a means to develop an aneurysm rupture mechanism. Segmented AAA images were used to analyze dependent elements that contribute to a three-dimensional (3-D) aneurysm reconstructive model using proposed Patient-Specific Aneurysm Rupture Predictor (P-SARP) method. The outcomes indicate that the proposed technique has the ability to associate the distortion of wall deformation with geometric analyses. This method can positively be integrated with established ultrasound techniques for improvements in the accuracy of future diagnoses of potential AAA ruptures.
This paper proposes a new Patient-Specific Aneurysm CFD Model (PSAM) which is based on the energy strain function combined with dilated vessel wall stress-strain relationship to predict aneurysm rupture. The PSAM relies on the available mechanical properties and parameters obtained from a personalized model. A personalized model is developed based on instantaneous arterial deformations obtained from Doppler Ultrasound (US) images at 6–9 MHz. It is shown that PSAM has the ability to correlate the deformation wall energy based on continuous patient-specifics in predicting rupture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.