Remote sensing of soil moisture has reached a level of good maturity and accuracy for which the retrieved products are ready to use in real-world applications. Due to the importance of soil moisture in the partitioning of the water and energy fluxes between the land surface and the atmosphere, a wide range of applications can benefit from the availability of satellite soil moisture products. Specifically, the Advanced SCATterometer (ASCAT) on board the series of Meteorological Operational (Metop) satellites is providing a near real time (and long-term, 9+ years starting from January 2007) soil moisture product, with a nearly daily (sub-daily after the launch of Metop-B) revisit time and a spatial sampling of 12.5 and 25 km. This study first performs a review of the climatic, meteorological, and hydrological studies that use satellite soil moisture products for a better understanding of the water and energy cycle. Specifically, applications that consider satellite soil moisture product for improving their predictions are analyzed and discussed. Moreover, four real examples are shown in which ASCAT soil moisture observations have been successfully applied toward: 1) numerical weather prediction, 2) rainfall estimation, 3) flood forecasting, and 4) drought monitoring and prediction. Finally, the strengths and limitations of ASCAT soil moisture products and the way forward for fully exploiting these data in real-world applications are discussed.
Abstract:The performance of Satellite Rainfall Estimate (SRE) products applied to flood inundation modelling was tested for the Mundeni Aru River Basin in eastern Sri Lanka. Three SREs (PERSIANN, TRMM, and GSMaP) were tested, with the Rainfall-Runoff-Inundation (RRI) model used as the flood inundation model. All the SREs were found to be suitable for applying to the RRI model. The simulations created by applying the SREs were generally accurate, although there were some discrepancies in discharge due to differing precipitation volumes. The volumes of precipitation of the SREs tended to be smaller than those of the gauged data, but using a scale factor to correct this improved the simulations. In particular, the SRE, i.e., the GSMaP yielding the best simulation that correlated most closely with the flood inundation extent from the satellite data, was considered the most appropriate to apply to the model calculation. The application procedures and suggestions shown in this study could help authorities to make better-informed decisions when giving early flood warnings and making rapid flood forecasts, especially in areas where in-situ observations are limited.
1651985 2015
Research ReportsThe publications in this series cover a wide range of subjects-from computer modeling to experience with water user associations-and vary in content from directly applicable research to more basic studies, on which applied work ultimately depends. Some research reports are narrowly focused, analytical and detailed empirical studies; others are wide-ranging and synthetic overviews of generic problems.Although most of the reports are published by IWMI staff and their collaborators, we welcome contributions from others. Each report is reviewed internally by IWMI staff, and by external reviewers. The reports are published and distributed both in hard copy and electronically (www.iwmi.org) and where possible all data and analyses will be available as separate downloadable files. Reports may be copied freely and cited with due acknowledgment.
About IWMIIWMI's mission is to provide evidence-based solutions to sustainably manage water and land resources for food security, people's livelihoods and the environment. IWMI works in partnership with governments, civil society and the private sector to develop scalable agricultural water management solutions that have a tangible impact on poverty reduction, food security and ecosystem health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.