Concurrent learning adaptive controllers, which use recorded and current data concurrently for adaptation, are developed for model reference adaptive control of uncertain linear dynamical systems. We show that a verifiable condition on the linear independence of the recorded data is sufficient to guarantee global exponential stability. We use this fact to develop exponentially decaying bounds on the tracking error and weight error, and estimate upper bounds on the control signal. These results allow the development of adaptive controllers that ensure good tracking without relying on high adaptation gains, and can be designed to avoid actuator saturation. Simulations and hardware experiments show improved performance. Copyright CONCURRENT LEARNING ADAPTIVE CONTROL OF LINEAR SYSTEMS 281 exponential weight convergence, and hence to guarantee exponential stability of the entire closed loop system, which consists of both the tracking error and weight error dynamics. Boyd and Sastry have shown that the condition on PE states can be directly related to a condition on the spectral properties of the exogenous reference input [11]. However, enforcing PE through exogenous excitation is not always feasible, particularly in applications that require high precision or smooth operation. Furthermore, since it is hard to predict the future behavior of systems such as aircraft, it can often be difficult to monitor online whether a signal will remain PE. Hence, exponential weight convergence, and therefore, exponential tracking error convergence, cannot be guaranteed in many adaptive control applications.In this paper, we describe a novel approach to guarantee exponential stability of MRAC of uncertain linear multivariable dynamical systems by utilizing the idea of concurrent learning [12,13]. Particularly, we show that a concurrent learning model reference adaptive controller, which uses both current and past data concurrently for adaptation, can guarantee global exponential stability of the zero solution of the closed loop dynamics subject to a verifiable condition on linear independence of the recorded data; without requiring PE states. That is, it can guarantee that the tracking error and the weight error dynamics simultaneously converge to zero exponentially fast as long as the system states are exciting over a finite period of time. Furthermore, we show that the guaranteed exponential stability results in guaranteed bound on how large the transient tracking error can be, and that this bound reduces exponentially fast in time. This bound can be used to design controllers that do not exceed pre-defined limits and do not saturate. Therefore, this result has significant importance in verification and validation of adaptive control systems. These results show that the inclusion of memory can significantly improve the performance and stability guarantees of adaptive controllers. Finally, these results compliment our previous work in concurrent learning (for example, [12][13][14]), and extend concurrent learning to adaptive control ...
We show that for an adaptive controller that uses recorded and instantaneous data concurrently for adaptation, a verifiable condition on linear independence of the recorded data is sufficient to guarantee exponential tracking error and parameter error convergence. This condition is found to be less restrictive and easier to monitor than a condition on persistently exciting exogenous input signal required by traditional adaptive laws that use only instantaneous data for adaptation.
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
Abstract-Most current Model Reference Adaptive Control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element are Radial Basis Function Networks (RBFNs), with RBF centers pre-allocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become non-effective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semi-global in nature. This paper investigates a Gaussian Process (GP) based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
Digital farming is the practice of modern technologies such as sensors, robotics, and data analysis for shifting from tedious operations to continuously automated processes. This paper reviews some of the latest achievements in agricultural robotics, specifically those that are used for autonomous weed control, field scouting, and harvesting. Object identification, task planning algorithms, digitalization and optimization of sensors are highlighted as some of the facing challenges in the context of digital farming. The concepts of multi-robots, human-robot collaboration, and environment reconstruction from aerial images and ground-based sensors for the creation of virtual farms were highlighted as some of the gateways of digital farming. It was shown that one of the trends and research focuses in agricultural field robotics is towards building a swarm of small scale robots and drones that collaborate together to optimize farming inputs and reveal denied or concealed information. For the case of robotic harvesting, an autonomous framework with several simple axis manipulators can be faster and more efficient than the currently adapted professional expensive manipulators. While robots are becoming the inseparable parts of the modern farms, our conclusion is that it is not realistic to expect an entirely automated farming system in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.