Oxidative stress due to excessive reactive oxygen species (ROS) and depleted antioxidants such as glutathione (GSH) can give rise to apoptotic cell death in acutely diabetic hearts and lead to heart disease. At present, the source of these cardiac ROS or the subcellular site of cardiac GSH loss [i.e., cytosolic (cGSH) or mitochondrial (mGSH) GSH] has not been completely elucidated. With the use of rotenone (an inhibitor of the electron transport chain) to decrease the excessive ROS in acute streptozotocin (STZ)-induced diabetic rat heart, the mitochondrial origin of ROS was established. Furthermore, mitochondrial damage, as evidenced by loss of membrane potential, increases in oxidative stress, and reduction in mGSH was associated with increased apoptosis via increases in caspase-9 and -3 activities in acutely diabetic hearts. To validate the role of mGSH in regulating cardiac apoptosis, L-buthionine-sulfoximine (BSO; 10 mmol/kg ip), which blocks GSH synthesis, or diethyl maleate (DEM; 4 mmol/kg ip), which inactivates preformed GSH, was administered in diabetic rats for 4 days after STZ administration. Although both BSO and DEM lowered cGSH, they were ineffective in reducing mGSH or augmenting cardiomyocyte apoptosis. To circumvent the lack of mGSH depletion, BSO and DEM were coadministered in diabetic rats. In this setting, mGSH was undetectable and cardiac apoptosis was further aggravated compared with the untreated diabetic group. In a separate group, GSH supplementation induced a robust amplification of mGSH in diabetic rat hearts and prevented apoptosis. Our data suggest for the first time that mGSH is crucial for modulating the cell suicide program in short-term diabetic rat hearts.
Altered intramuscular lipid metabolism, circulating cytokines, and inflammatory macrophage infiltration of muscle tissue have been recently linked to muscle insulin resistance provoked by fatty acids. Each is analysed separately in this review, but they may act simultaneously and synergistically to render skeletal muscle insulin-resistant.
OBJECTIVE-Heart disease is a leading cause of death in diabetes and could occur because of excessive use of fatty acid for energy generation. Our objective was to determine the mechanisms by which AMP-activated protein kinase (AMPK) augments cardiac lipoprotein lipase (LPL), the enzyme that provides the heart with the majority of its fatty acid.RESEARCH DESIGN AND METHODS-We used diazoxide in rats to induce hyperglycemia or used 5-aminoimidazole-4-carboxamide-1--D-ribofuranoside (AICAR) and thrombin to directly stimulate AMPK and p38 mitogen-activated protein kinase (MAPK), respectively, in cardiomyocytes.RESULTS-There was a substantial increase in LPL at the coronary lumen following 4 h of diazoxide. In these diabetic animals, phosphorylation of AMPK, p38 MAPK, and heat shock protein (Hsp)25 produced actin cytoskeleton rearrangement to facilitate LPL translocation to the myocyte surface and, eventually, the vascular lumen. AICAR activated AMPK, p38 MAPK, and Hsp25 in a pattern similar to that seen with diabetes. AICAR also appreciably enhanced LPL, an effect reduced by preincubation with the p38 MAPK inhibitor SB202190 or by cytochalasin D, which inhibits actin polymerization. Thrombin activated p38 MAPK in the absence of AMPK phosphorylation. Comparable with diabetes, activation of p38 MAPK and, subsequently, Hsp25 phosphorylation and F-actin polymerization corresponded with an enhanced LPL activity. SB202190 and silencing of p38 MAPK also prevented these effects induced by thrombin and AICAR, respectively. CONCLUSIONS-We propose that AMPK recruitment of LPL to the cardiomyocyte surface (which embraces p38 MAPK activation and actin cytoskeleton polymerization) represents an immediate compensatory response by the heart to guarantee fatty acid supply when glucose utilization is compromised. Diabetes 57: 64-76, 2008
Our data demonstrate that although DEX and MET are used as anti-inflammatory agents or insulin sensitizers, respectively, their common property to phosphorylate AMPK promotes cardiomyocyte cell survival through its regulation of Bad and the mitochondrial apoptotic mechanism.
BackgroundMacrophage-derived factors contribute to whole-body insulin resistance, partly by impinging on metabolically active tissues. As proof of principle for this interaction, conditioned medium from macrophages treated with palmitate (CM-PA) reduces insulin action and glucose uptake in muscle cells. However, the mechanism whereby CM-PA confers this negative response onto muscle cells remains unknown.Methodology/Principal FindingsL6-GLUT4myc myoblasts were exposed for 24 h to palmitate-free conditioned medium from RAW 264.7 macrophages pre-treated with 0.5 mM palmitate for 6 h. This palmitate-free CM-PA, containing selective cytokines and chemokines, inhibited myoblast insulin-stimulated insulin receptor substrate 1 (IRS1) tyrosine phosphorylation, AS160 phosphorylation, GLUT4 translocation and glucose uptake. These effects were accompanied by a rise in c-Jun N-terminal kinase (JNK) activation, degradation of Inhibitor of κBα (IκBα), and elevated expression of proinflammatory cytokines in myoblasts. Notably, CM-PA caused IRS1 phosphorylation on Ser1101, and phosphorylation of novel PKCθ and ε. Co-incubation of myoblasts with CM-PA and the novel and conventional PKC inhibitor Gö6983 (but not with the conventional PKC inhibitor Gö6976) prevented PKCθ and ε activation, JNK phosphorylation, restored IκBα mass and reduced proinflammatory cytokine production. Gö6983 also restored insulin signalling and glucose uptake in myoblasts. Moreover, co-silencing both novel PKC θ and ε isoforms in myoblasts by RNA interference, but not their individual silencing, prevented the inflammatory response and restored insulin sensitivity to CM-PA-treated myoblasts.Conclusions/Clinical SignificanceThe results suggest that the block in muscle insulin action caused by CM-PA is mediated by novel PKCθ and PKCε. This study re-establishes the participation of macrophages as a relay in the action of fatty acids on muscle cells, and further identifies PKCθ and PKCε as key elements in the inflammatory and insulin resistance responses of muscle cells to macrophage products. Furthermore, it portrays these PKC isoforms as potential targets for the treatment of fatty acid-induced, inflammation-linked insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.