The fabrication and characterization of nanocomposites consisting of graphene oxide (GO) reinforced poly (3, 4 -ethylenedioxythiophene) -block -poly (ethylene glycol) (PEDOTblock-PEG)/polyvinylidenefluoride (PVDF) were investigated. The characterizations of nanocomposites were carried out using UV-vis spectroscopy, X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transforms infrared (FTIR) and FT-Raman spectroscopy. Dielectric properties were investigated using an impedance analyzer as a function of frequency (50 Hz to 35 MHz) and temperature in the range (40-150 o C). Atomic force microscopy (AFM) was employed to study the surface morphology of nanocomposites. Atomic force microscopy reveals that the surface roughness increases as a function of GO loading. The presence of high surface area GO within the polymer matrix resulted in substantially improved thermal stability. Better dispersion resulted in an increase in the dielectric constant from 58.684 for 0.5 wt% to 266.091 for 3 wt% GO loading and dielectric loss from 1.758 for 0.5 wt % GO to 17.694 for 3 wt % GO. High values of dielectric constant are obtained with comparatively low dielectric loss. Hence, polymer nanocomposites with high dielectric constant and low dielectric loss have the potential to be used in electronic and electric industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.