p202, an interferon-inducible murine protein, is a member of the "200 family" of proteins and is primarily nuclear. p202 is a modulator of transcription; it binds several transcription factors, including NF-B p50 and p65, AP-1 c-Fos and c-Jun, and E2F1, and inhibits their transcriptional activity. p202 also binds pRb, the retinoblastoma protein, and if overexpressed it retards cell proliferation. Here we report that using the yeast twohybrid assay we found that p202 bound the murine homolog of the human p53-binding protein 1 (53BP1), a protein shown to interact with the DNA binding domain of the p53 tumor suppressor protein. p202 bound a 98-amino acid segment from 53BP1. This binding was inhibited by the replacement in p202 of a histidine (from the M(F/L)HATVA(T/S) sequence that is conserved among all of the 200 family proteins) by phenylalanine. We also report that overexpression of p202 inhibited the p53-dependent expression of reporter genes containing p53-activable segments from the mdm2 and p21 genes, whereas a decrease in the p202 level (in consequence of the expression of 202 antisense RNA) resulted in an increase in the p53-dependent expression of these reporters. Expression of the 53BP1 segment binding to p202 overcame the inhibition by overexpressed p202 of the transcription of reporters mediated by the p53 or the AP-1 transcription factors and of the proliferation of yeast.
While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.