Enzymes are powerful tools that help sustain a clean environment in several ways. They are utilized for environmental purposes in a number of industries including agro-food, oil, animal feed, detergent, pulp and paper, textile, leather, petroleum, and specialty chemical and biochemical industry. Enzymes also help to maintain an unpolluted environment through their use in waste management. Recombinant DNA technology, protein engineering, and rational enzyme design are the emerging areas of research pertaining to environmental applications of enzymes. The future will also see the employment of various technologies including gene shuffling, high throughput screening, and nanotechnology. This article presents an overview of the enzymatic applications in pollution control and the promising research avenues in this area.
Here we report the successful implementation of the Plackett-Burman multifactorial design to screen the limiting components for growth and subsequent use of the response surface methodology (RSM) to design a medium that supported exponential growth of the aggregated morphology of the shipworm bacterium, Teredinobacter turnirae. The results obtained with the help of Plackett-Burman design indicated limitations of three components in the growth medium, MnCl2.4H2O, Na2CO3, and K2HPO4. The concentrations of these three components were further optimized using RSM. By increasing the concentrations of the above-mentioned components by 4-fold, 12-fold, and 12-fold, respectively, it became possible to achieve exponential growth of the culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.