In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4-dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, dopamine-modified hyaluronic acid (HA-DN) prepared by carbodiimide chemistry is used to form thin and surface-adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films are developed based on chitosan and HA-DN to form polymeric coatings using the layer-by-layer methodology. The nanostructured films formation is monitored by quartz crystal microbalance. The film surface is characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements are also conducted. The adhesion properties are analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests show an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications.
Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided tissue and bone regeneration membrane, fabricated by solvent casting. The CHT/BG-NP nanocomposite membranes are characterized in terms of water uptake, in mechanical tests, under simulated physiological conditions and in in vitro bioactivity tests. The addition of BG-NPs to CHT membranes decreased the mechanical potential of these membranes, but on the other hand the bioactivity improved. The membranes containing the BG-NPs induced the precipitation of bone-like apatite in simulated body fluid (SBF). Biological tests were carried out using human periodontal ligament cells and human bone marrow stromal cells. CHT/BG-NP composite membranes promoted cell metabolic activity and mineralization. The results indicate that the CHT/BG-NP composite membrane could potentially be used as a temporary guided tissue regeneration membrane in periodontal regeneration, with the possibility to induce bone regeneration.
Bioactive glass nanoparticles (BG-NPs), based on both ternary (SiO(2)-CaO-P(2)O(5)) and binary (SiO(2)-CaO) systems, were prepared via an optimized sol-gel method. The pH of preparation and the effect of heat treatment temperature were evaluated, as well as the effect of suppressing P in the bioactivity ability of the materials. The morphology and composition of the BG-NPs were studied using FTIR, XRD and SEM. The bioactive character of these materials was accessed in vitro by analyzing the ability for apatite formation onto the surface after being immersed in simulated body fluid (SBF). XRD, EDX and SEM were used to confirm the bioactivity of the materials. The BG-NP effect on cell metabolic activity was assessed by seeding L929 cells with their leachables, proving the non-cytotoxicity of the materials. Finally the most bioactive BG-NPs developed (ternary system prepared at pH 11.5 and treated at 700 °C) were successfully combined with chitosan in the production of biomimetic nanocomposite osteoconductive membranes that could have the potential to be used in guided tissue regeneration.
The micro-architecture of nacre (mother of pearl) has been classically illustrated as a 'brick-and-mortar' arrangement. It is clear now that hierarchical organization and other structural features play an important role in the amazing mechanical properties of this natural nanocomposite. The more important structural characteristics and mechanical properties of nacre are exposed as a base that has inspired scientists and engineers to develop biomimetic strategies that could be useful in areas such as materials science, biomaterials development and nanotechnology. A strong emphasis is given on the latest advances on the synthetic design and production of nacre-inspired materials and coatings, in particular to be used in biomedical applications.
Through the natural evolutionary process, organisms have been improving amazing mineralized materials for a series of functions using a relatively few constituent elements. Biomineralization has been widely studied in the last years. It is important to understand how minerals are produced by organisms and also their structure and the corresponding relationship with the properties and function. Moreover, one can look at minerals as a tool that could be used to develop high performance materials, through design inspiration and to find novel processing routes functioning at mild conditions of temperature, pressure and solvent type. As important as the molecular constituents are structural factors, which include the existence of different levels of organization and controlled orientation. Moreover, the way how the hierarchical levels are linked and interfacial features plays also a major role in the final behavior of the biogenic composite. The main aim of this work is to review the latest contributions that have been reported on composite materials produced in nature, and to relate their structures at different length scales to their main functions and properties. There is also an interest in developing new biomimetic procedures that could induce the production of calcium phosphate coatings, similar to bone apatite in substrates for biomedical applications, namely in orthopedic implants and scaffolds for tissue engineering and regenerative medicine; this topic will be also addressed. Finally, we also review the latest proposed approaches to develop novel synthetic materials and coatings inspired from natural-based nanocomposites.Keywords: Biomimetics, biocomposites, structure-property relationships, biomaterials, mineralization.ACCEPTED MANUSCRIPT 2 1. Introduction Nature, through the evolutionary process, has been able to design and produce highly sophisticated materials, used for a variety of functions, including for structural purposes [1], [2]. The physical properties of biological systems, such as the mechanical performance, are typically far better than that of the equivalent synthetic materials, with similar compositions and processed with present technologies. Moreover, these materials are produced at mild temperature and pressure conditions, with relatively low energy consumption. Finally, such systems are made with significant weak components such as brittle minerals, soft proteins and water. Therefore, nature has been a fascinating source of inspiration for scientists and engineers. Biomimetics is an emerging field of science that includes the study of how Nature designs, processes and assembles/disassembles molecular building blocks to fabricate high performance hard polymer-based composites (e.g., mollusc shells, bone, tooth) and/or soft materials (e.g., skin, cartilage, tendons), and then applies these designs and processes to engineer new molecules and materials with unique properties [3], [4], [5]. Biologically inspired design or adaptation or derivation from nature is referred to as 'biomim...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.