PTEN mutations are frequently found in malignant glioma and can result in activated phosphatidylinositol-3-kinase/Akt survival signaling associated with resistance to radiotherapy. Strategies to interfere with aberrant PI3K/Akt activity are therefore being developed to improve the therapeutic efficacy of radiotherapy in patients with malignant glioma. The methylxanthine caffeine has been described as a PI3K inhibitor and is also known to sensitize cells to ionizing radiation. However, a direct association between these two caffeinemediated effects has not been reported yet. Therefore, we asked whether caffeine or its derivative pentoxifylline differentially affect the radiosensitivity of malignant gliomas with different PTEN status. As models, we used the radiosensitive EA14 malignant glioma cell line containing wild-type PTEN and the radioresistant U87MG malignant glioma cell line harboring mutant PTEN. Our study revealed that caffeine and pentoxifylline radiosensitized PTEN-deficient but not PTEN-proficient glioma cells. Radiosensitization of PTENdeficient U87MG cells by caffeine was significantly correlated with the activation of the G 1 DNA damage checkpoint that occurred independently of de novo synthesis of p53 and p21. The p53 independency was also confirmed by a significant caffeine-mediated radiosensitization of the glioma cell lines T98G and U373MG that are deficient for both PTEN and p53. Furthermore, caffeine-mediated radiosensitization was associated with the inhibition of Akt hyperphosphorylation in PTEN-deficient cells to a level comparable with PTEN-proficient cells. Our data suggest that the methylxanthine caffeine or its derivative pentoxifylline are promising candidate drugs for the radiosensitization of glioma cells particularly with PTEN mutations. Mol Cancer Ther; 9(2); 480-8. ©2010 AACR.
Activation of p53 has been causally linked to normal tissue damage after irradiation. Pifithrin-α (PFT-α), a specific inhibitor of p53, has been suggested as a combinatory agent in the treatment of p53-deficient tumors in which inhibition of p53 would not compromise therapeutic efficacy but would decrease p53-mediated side effects in normal tissue. We tested this concept for radiotherapy of p53-deficient and -proficient glioma. We observed significant interaction of PFT-α with radiation-induced G(1) checkpoint activation and plating efficiency only in glioma cells expressing at least one wild-type allele of p53. This interaction was correlated with PFT-α-mediated inhibition of radiation-induced expression of the p53 target gene p21(Waf1). Despite inhibition of p53 function we did not observe significant changes in radiosensitivity after treatment with PFT-α in either p53-deficient or p53-proficient tumor cells. We confirmed these results in p53-proficient lung cancer cells. In contrast, PFT-α significantly increased the fraction of normal astrocytes and fibroblasts surviving irradiation; this was accompanied by improved DNA damage repair, speaking against an accumulation of cells with genetic lesions after PFT-α treatment. In conclusion, PFT-α might prove useful in protecting normal tissue from the side effects of radiotherapy without reducing the efficacy of treatment for both p53-proficient and -deficient tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.