: Inflammation in the joint causes peripheral sensitization (increase of sensitivity of nociceptive primary afferent neurons) and central sensitization (hyperexcitability of nociceptive neurons in the central nervous system). The processes of sensitization are thought to be the basis of arthritic pain that appears as spontaneous pain (joints at rest) and hyperalgesia (augmented pain response on noxious stimulation and pain on normally nonpainful stimulation). Sensitization also facilitates efferent neuronal processes through which the nervous system influences the inflammatory process. Peripheral sensitization is produced by the action of inflammatory mediators such as bradykinin, prostaglandins, neuropeptides, and cytokines which activate corresponding receptors in proportions of nerve fibers. In addition, the expression of receptors, for example, bradykinin and neurokinin 1 receptors, is upregulated during inflammation. The development of hyperexcitability of spinal cord neurons is produced by various transmitter/receptor systems that constitute and modulate synaptic activation of the neurons. The key transmitter is glutamate that activates N‐methyl‐d‐aspartate (NMDA) and non‐NMDA receptors on spinal cord neurons. Blockade of these receptors prevents and reduces central sensitization. Excitatory neuropeptides (substance P and calcitonin gene‐related peptide) further central sensitization. Central sensitization also is facilitated by mediators that have complex actions (e.g., prostaglandin E2). Spinal PGE2 binds to receptors at presynaptic endings of primary afferent neurons (thus influencing synaptic release) and to receptors on postsynaptic spinal cord neurons. The administration of PGE2 to the spinal cord surface produces changes of responsiveness of spinal neurons similar to peripheral inflammation, and spinal indomethacin to the spinal cord attenuates development of hyperexcitability significantly.
Objective. The reduction of pain in the course of antiinflammatory therapy can result from an attenuation of the inflammatory process and/or from the neutralization of endogenous mediators of inflammation that act directly on nociceptive neurons. The purpose of this study was to investigate whether analgesic effects of the neutralization of tumor necrosis factor ␣ (TNF␣) are due to an attenuation of inflammation or whether direct neuronal effects significantly contribute to pain relief in the course of therapy.Methods. Locomotor and pain-related behavior and histology were assessed in rats with chronic antigen-induced arthritis (AIA) in the knee joint, and the rats were treated with systemic saline, etanercept, or infliximab. The expression of TNF receptors (TNFRs) in dorsal root ganglia was measured using immunohistochemical analysis and polymerase chain reaction. Action potentials were recorded from afferent A␦ fibers and C fibers of the medial knee joint nerve, and etanercept and infliximab were injected intraarticularly into normal or inflamed knee joints (AIA or kaolin/ carrageenan-induced inflammation).Results. In rats with AIA, both etanercept and infliximab significantly decreased inflammationinduced locomotor and pain-related behavior, while joint swelling was only weakly attenuated and histomorphology still revealed pronounced inflammation. A large proportion of dorsal root ganglion neurons showed TNFRI-and TNFRII-like immunoreactivity. Intraarticular injection of etanercept reduced the responses of joint afferents to mechanical stimulation of the inflamed joint starting 30 minutes after injection, but had no effect on responses to mechanical stimulation of the uninflamed joint. Conclusion. Overall, these data show the pronounced antinociceptive effects of TNF␣ neutralization, thus suggesting that reduction of the effects of TNF␣ on pain fibers themselves significantly contributes to pain relief.
Both inflammatory and degenerative diseases of joints are major causes of chronic pain. This overview addresses the clinical problem of joint pain, the nociceptive system of the joint, the mechanisms of peripheral and central sensitization during joint inflammation and long term changes during chronic joint inflammation. While the nature of inflammatory pain is obvious the nature and site of origin of osteoarthritic pain is less clear. However, in both pathological conditions mechanical hyperalgesia is the major pain problem, and indeed, both joint nociceptors and spinal nociceptive neurons with joint input show pronounced sensitization for mechanical stimulation. Molecular mechanisms of mechanical sensitization of joint nociceptors are addressed with an emphasis on cytokines, and molecular mechanisms of central sensitization include data on the role of excitatory amino acids, neuropeptides and spinal prostaglandins. The overview will also address long-term changes of pain-related behavior, response properties of neurons and receptor expression in chronic animal models of arthritis.
The proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) not only promote and maintain inflammation, they also contribute to the generation and maintenance of inflammatory pain by acting at nociceptive nerve cells. A large proportion of dorsal root ganglion (DRG) neurons express TNF receptors and receptor units for stimulation with IL-6. In the rat model of antigen-induced arthritis (AIA), neutralization of TNF-alpha by etanercept and infliximab reduced inflammation-evoked mechanical hyperalgesia at the inflamed knee joint. This treatment also attenuated the infiltration of macrophages into the DRGs usually observed during the acute phase of AIA. Intra-articular application of etanercept reduced the responses of C-fibers to mechanical stimulation of the inflamed joint but did not influence responses to stimulation of the normal joint. Finally, in cultured DRG neurons TNF-alpha increased the proportion of neurons that express the TRPV1 receptor and may thus contribute to the generation of inflammation-evoked thermal hyperalgesia.
After peripheral nerve damage macrophages infiltrate the dorsal root ganglia (DRG) in which cell bodies of lesioned neurons are located. However, infiltration of macrophages into the DRGs was also reported in complete Freund's adjuvant (CFA)-induced inflammation raising the question whether CFA inflammation induces nerve cell damage or whether peripheral inflammation may also trigger macrophage infiltration into DRGs. Related questions are, first, which signals trigger macrophage infiltration into DRGs and, second, is macrophage infiltration correlated with pain-related behavior. Using the rat model of unilateral antigen-induced arthritis (AIA) in the knee we found a massive infiltration of ED1(+) macrophages into the ipsi- and contralateral lumbar DRGs but not into thoracic DRGs. At no time point of AIA DRG neurons showed expression of activating transcription factor-3 (ATF3) indicating that macrophage infiltration is not explainable by nerve cell lesions in this model. During AIA, lumbar but not thoracic DRGs exhibited a bilateral de novo expression of vascular cell adhesion molecule-1 (VCAM-1) which is known to be involved in macrophage infiltration. Tumor necrosis factor-alpha (TNF-alpha) neutralization with etanercept or infliximab treatment after induction of AIA significantly reduced both macrophage infiltration and VCAM-1 expression. It also decreased mechanical hyperalgesia at the inflamed joint although the joint inflammation itself was barely attenuated, and it reduced mechanical hyperalgesia at the non-inflamed contralateral knee joint. Thus, bilateral segment-specific infiltration of macrophages into DRGs is part of an unilateral inflammatory process in peripheral tissue and it may be involved in the generation of hyperalgesia in particular on the non-inflamed side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.