An unprecedented C-C coupling reaction between alkenes and ketones by hydrogen-atom transfer, using Fe(acac) and PhSiH in EtOH, is described. This mild protocol features high site selectivity and allows the construction of sterically congested structures containing tertiary alcohols and quaternary centers. The overall process introduces a novel strategic bond disconnection for ring-closing reactions.
A diastereoselective synthesis of cis-5-oxodecahydroquinolines is described in which three stereocenters are generated in a one-pot reaction. The reaction involves a lithium hydroxide-promoted Robinson annulation/intramolecular aza-Michael domino process from an achiral acyclic tosylamine-tethered β-keto ester. The development and scope of this reaction was facilitated through the use of DFT-based mechanistic studies, which enabled the observed diastereodivergent course of the azacyclization to be rationalized. The varying stereochemistry and stability of the resulting decahydroquinolines was found to depend on whether a β-keto ester or ketone were embedded in the substrates undergoing aminocyclization. This synthetic approach gave access not only to both diastereomeric cis-decahydroquinolines from the same precursor, but also to the corresponding trans isomers, through an epimerization processes of the corresponding N-unsubstituted cis-5-oxodecahydroquinolines. The described methodology provides advanced building-blocks with the three relative stereochemistries required for the total synthesis of phlegmarine alkaloids.
A revised structure for the Lycopodium alkaloid huperzine N is proposed and confirmed by synthesis. The key synthetic steps involve an epimerization of a cis-5-oxodecahydroquinoline to the corresponding trans isomer and a coupling, followed by a diastereoselective hydrogenation using Wilkinson's catalyst to incorporate the pyridylmethyl moiety. This route allowed the alkaloid serralongamine A to be synthesized for the first time, and two additional steps led to the revised structure of huperzine N, both products bearing an unusual decahydroquinoline stereostructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.