Abstract. How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality in 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NO x and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by > 70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NO xlimited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Policies favoring the burning of natural gas in place of fuel oil and diesel have great potential for ozone reduction and improved air quality for growing urban regions located in tropical, forested environments around the world.
<p><strong>Abstract.</strong> How a changing energy matrix for power production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon basin of Brazil, is in the process of changing its fossil fuel power energy matrix from entirely fuel oil and diesel to nearly entirely natural gas across an approximately ten-year period. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for power production, which was the reality in 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for power production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on power generation, refining operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reaching reductions of 73&#8201;% (110 to 30&#8201;ppb) on the most polluted days. NO<sub><i>x</i></sub> and CO emissions decreased by approximately 89&#8201;% and 55&#8201;%, respectively, after the complete change in the energy matrix. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NO<sub><i>x</i></sub>-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. Thus, policies favoring the burning of natural gas in place of fuel oil and diesel have great potential for ozone reduction and improve air quality for growing urban regions located in tropical, forested environments around the world.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.