Plant-pathogenic fungi produce an array of extracellular hydrolytic enzymes that enable them to penetrate and infect the host tissue; these enzymes are collectively called cell wall-degrading enzymes (CWDE). They may contribute to pathogenesis by degrading wax, cuticle and cell walls, thus aiding tissue invasion and pathogen dissemination. Furthermore, they can act as elicitors of host defense reaction.Fusarium head blight (FHB) is a disease caused principally by Fusarium graminearum on crops, occurring all over the world. Important economic losses on wheat-growing areas have been registered by altering quality parameters of grains. Significant progress has been made in understanding the infection process from F. graminearum on wheat, based on genomic technologies. The virulence degree of this phytopathogen on crops could arise from differences in the production of extracellular enzymes, factors controlling the establishment of infection.Fusarium graminearum isolates from different geographical areas have been examined, and a combination of morphological and molecular data allowed the division of fungi in diverse groups, which have been related to the variation in pathogenicity. In most studied cases there is a correlation between the presence of pectic enzymes, disease symptom and virulence, being also their production decisive in the infection process.
Fusarium graminearum, the main etiological agent of Fusarium head bligh, has high intraspecific genetic diversity, which is related to the variability in the aggressiveness among isolates against wheat. The aggressiveness involves different mechanisms as the production and liberation of extracellular enzymes and mycotoxins. In the present paper, several F. graminearum isolates obtained from wheat spikes from Pampas region, Argentina, were screened for polygalacturonase (pectinase), proteolytic, and lipase extracellular enzymatic activities production, as well as for the capacity to produce deoxynivalenol. The enzymatic production in terms of magnitude was varied among isolates, which could be related to a differential capacity to infect wheat. Both polygalacturonase as proteolytic activities had a maximum activity in the first days of incubation. Instead, the lipase activity reached its maximum activity after advanced incubation time. Deoxynivalenol production was delayed over time with respect to the first enzymatic activities, which would infer its relation to the progress of the disease in the host, more than with the early stages of infection. The characterization carried out in this research would allow us to apply a selection criterion among isolates for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.