Study of proteins located at the host–parasite interface in schistosomes might provide clues about the mechanisms utilized by the parasite to escape the host immune system attack. Micro-exon gene (MEG) protein products and venom allergen-like (VAL) proteins have been shown to be present in schistosome secretions or associated with glands, which led to the hypothesis that they are important components in the molecular interaction of the parasite with the host. Phylogenetic and structural analysis of genes and their transcripts in these two classes shows that recent species-specific expansion of gene number for these families occurred separately in three different species of schistosomes. Enrichment of transposable elements in MEG and VAL genes in Schistosoma mansoni provides a credible mechanism for preferential expansion of gene numbers for these families. Analysis of the ratio between synonymous and nonsynonymous substitution rates (dN/dS) in the comparison between schistosome orthologs for the two classes of genes reveals significantly higher values when compared with a set of a control genes coding for secreted proteins, and for proteins previously localized in the tegument. Additional analyses of paralog genes indicate that exposure of the protein to the definitive host immune system is a determining factor leading to the higher than usual dN/dS values in those genes. The observation that two genes encoding S. mansoni vaccine candidate proteins, known to be exposed at the parasite surface, also display similar evolutionary dynamics suggests a broad response of the parasite to evolutionary pressure imposed by the definitive host immune system.
The aim of this work was to apply photoacoustic spectroscopy for the ex vivo determination of the penetration rate of a phytotherapic formulation for vitiligo therapeutic, with or without salicylic acid as the promoter agent. In addition, the compound toxicity and morphophysiology effects were evaluated for different concentrations of salicylic acid. The experiments were performed as a function of the period of time of treatment in a well-controlled group of rabbits. Toxic effects were not observed with any of the tested products. All formulations containing salicylic acid induced cutaneous reaction which was dose dependent. The histological analysis showed that the use of the medication was associated with an increased comedogenic effect in relation to the control group, regardless of salicylic acid concentration. Inflammatory reactions and acanthosis were observed only in the animals treated with formulations containing higher concentrations of salicylic acid, while none of these effects were detected with the use of the formulation containing 2.5% (wt/vol) of salicylic acid. Photoacoustic depth monitoring showed that both formulations, with or without salicylic acid, propagated through the skin up to the melanocytes region, suggesting that the transport of the active agent may occur through the epithelial structure without the need of using queratinolitic substances, which are known to induce side effects in the animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.