Urban analyses demand simplifications that balance modelling level of detail and scope broadness. Thus, classification by archetypes is a promising methodological approach. Such an approach is common for energy studies but rarely applied for Life Cycle Assessment (LCA) purposes. When archetypes are used in urban LCA, they generally result from previous studies for classification and characterization according to parameters that directly affect the operational energy performance of buildings. This paper tackles two research questions: i) Is it appropriate to aggregate building stocks based on operational energy (OE) variables when life cycle impacts are investigated? ii) When integrated LCA (OE + embodied impacts) is pursued, would variables describing both interests simultaneously result in better representation than using operational energy-based clustering to predict embodied impacts and vice versa? Thus, we aim to confirm that, combining variables that govern OE and embodied impacts offers a better result than using OE to predict materials groupings, even if some adherence is lost relatively to single-objective clustering. Clustering experiments were carried out for the campus of the University of Campinas, Brazil. After unsupervised k-medoid (PAM) grouping, the data were submitted to a supervised learning (neural networks) classification method. Generated confusion matrices demonstrate how adherent the clustering is when considering one interest to predict the other in three situations. Results indicate that an operational energy-driven archetype fails to represent buildings from the embodied impacts viewpoint, and that merging operational energy and embodied impact variables would better support integrated life cycle impact predictions.
Agradeço primeiramente a Deus pela oportunidade de crescimento proporcionada. Agradeço também a todas as pessoas especiais que, de alguma forma, contribuíram para esta minha jornada.À minha orientadora Prof. Dra. Vanessa Gomes da Silva, que me inspirou a voltar à universidade por sua excelência acadêmica, por aceitar seguir comigo nesse desafio e dividir um pouco de seus conhecimentos. À minha co-orientadora Prof. Dra. ReginaRuschel que me proporcionou amplas experiências e contribuições acadêmicas. Ás Prof. Dra. Brenda Leite e Prof. Dra. Leticia de Oliveira Neves pela participação nas bancas e pelas valiosas contribuições. Á Prof. Dra. Doris C. C. K. Kowaltowski pelo carinho. Aos funcionários da FEC/Unicamp, em especial ao sr. Eduardo Estevam, pela eficiência e disponibilidade em nos auxiliar. Agradeço por todas as novas amizades conquistadas na PPGEC e PPGATC, em especial às "meninas" do LAMPA: Paula Mota, Lorena Moreira e Fernanda Machado, que foram essenciais para o desenvolvimento dessa pesquisa e me ensinaram como renovar as energias com um café e um abraço! Á Marcella Saade, cujo profissionalismo e serenidade são inspirações para todo o grupo. À minha mãe e ao meu parceiro, pelo apoio de sempre na vida, e a todos os amigos e familiares que torcem pelo meu sucesso. À UNICAMP e ao CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico ao pelo apoio à pesquisa. "Nada é tão grande que não possa ser alcançado e nada é tão pequeno que não seja importante".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.