It is believed that the approximate estimation of large sets and the exact quantification of small sets (subitizing) are supported by two different systems, the Approximate Number System (ANS) and Object Tracking System (OTS), respectively. It is a current matter of debate whether they are both impaired in developmental dyscalculia (DD), a specific learning disability in symbolic number processing and calculation. Here we tackled this question by asking 32 DD children and 32 controls to perform a series of tasks on visually presented sets, including exact enumeration of small sets as well as comparison of large, uncountable sets. In children with DD, we found poor sensitivity in processing large numerosities, but we failed to find impairments in the exact enumeration of sets within the subitizing range. We also observed deficits in visual short-term memory skills in children with dyscalculia that, however, did not account for their low ANS acuity. Taken together, these results point to a dissociation between quantification skills in dyscalculia, they highlight a link between DD and low ANS acuity and provide support for the notion that DD is a multifaceted disability that covers multiple cognitive skills.
A long-standing debate concerns whether developmental dyscalculia is characterized by core deficits in processing nonsymbolic or symbolic numerical information as well as the role of domain-general difficulties. Heterogeneity in recruitment and diagnostic criteria make it difficult to disentangle this issue. Here, we selected children ( n = 58) with severely compromised mathematical skills (2 SD below average) but average domain-general skills from a large sample referred for clinical assessment of learning disabilities. From the same sample, we selected a control group of children ( n = 42) matched for IQ, age, and visuospatial memory but with average mathematical skills. Children with dyscalculia showed deficits in both symbolic and nonsymbolic number sense assessed with simple computerized tasks. Performance in the digit-comparison task and the numerosity match-to-sample task reliably separated children with developmental dyscalculia from controls in cross-validated logistic regression (area under the curve = .84). These results support a number-sense-deficit theory and highlight basic numerical abilities that could be targeted for early identification of at-risk children as well as for intervention.
Humans' inborn ability to represent and manipulate numerical quantities is supported by the parietal cortex, which is also involved in a variety of spatial and motor abilities. While the behavioral links between numerical and spatial information have been extensively studied, little is known about the connection between number and action. Some studies in adults have shown a series of interference effects when simultaneously processing numerical and action information. We investigated the origins of this link by testing forty infants (7- to 9-month-old) in one of two experimental conditions: one group was habituated to congruent number-hand pairings, where the larger the number, the more open the hand-shape associated; the second group was habituated to incongruent number-hand pairings, where the larger the number, the more close the hand-shape associated. In test trials, both groups of infants were presented with congruent and incongruent pairings. We found that only infants habituated to congruency showed a significantly higher looking time to the test trial depicting incongruent pairings. These findings show for the first time that infants spontaneously associate magnitude-related changes across the dimensions of number and action-related information, thus offering support to the existence of an early, preverbal number-action link in the human mind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.