An ultrahigh vacuum apparatus for the deposition of thin films with controlled three-dimensional nanometer-scale structure is described. Our system allows an alternate, faster, cheaper way of obtaining nanoscale structured thin films when compared to traditional procedures of patterning and etching. It also allows creation of porous structures that are unattainable with known techniques. The unique feature of this system is the dynamic modification of the substrate tilt and azimuthal orientation with respect to the vapor source during deposition of a thin film. Atomic-scale geometrical shadowing creates a strong directional dependence in the aggregation of the film, conferring control over the resulting morphological structure on a scale of less than 10 nm. Motion can create pillars, helixes, zig-zags, etc. Significant features of the apparatus include variable substrate temperature, insertion and removal of specimens from atmospheric conditions without venting the deposition system, computer controlled process parameters, and in situ analysis capabilities. The deposition system was successfully employed for the fabrication of a variety of nanostructured thin films with a wide range of potential applications.
Nanocolumn pseudo-regular arrays of silicon with controlled aspect ratio and porosity are fabricated by electron-beam evaporation using the glancing angle deposition (GLAD) method with vapour impinging at oblique incidence onto rapidly rotating substrates. The width W at positions y along the height of one individual column scales with y following a power law dependence W approximately y(p). We demonstrate that the scaling exponent value, p, can be modified from 0.6 to 0.3 by varying the vapour incidence angle from 75 degrees to a glancing 89 degrees from the substrate normal. This exponent is an important morphological factor for thin films, as it determines the morphological correlation length, nanocolumn profile, size, and spacing. The nanocolumn mean diameter can be varied between 12 and 40 nm, while the intercolumnar spacing can be adjusted between 37 and 85 nm via changing the incidence angle. The growth mechanism and film morphology are explored in detail.
Porous materials with nanometer-scale structure are important in a wide variety of applications including electronics, photonics, biomedicine, and chemistry. Recent interest focuses on understanding and controlling the properties of these materials. Here we demonstrate porous silicon interference filters, deposited in vacuum with a technique that enables continuous variation of the refractive index between that of bulk silicon and that of the ambient (n approximately 3.5 to 1). Nanometer-scale oscillations in porosity were introduced with glancing angle deposition, a technique that combines oblique deposition onto a flat substrate of glass or silicon in a high vacuum with computer control of substrate tilt and rotation. Complex refractive index profiles were achieved including apodized filters, with Gaussian amplitude modulations of a sinusoidal index variation, as well as filters with index matching antireflection regions. A novel quintic antireflection coating is demonstrated where the refractive index is smoothly decreased to that of the ambient, reducing reflection over a broad range of the infrared spectrum. Optical transmission characterstics of the filters were accurately predicted with effective medium modeling coupled with a calibration performed with spectroscopic ellipsometry.
We propose an application of spectroscopic ellipsometry pertinent to the characterization of nanostructure inclination of oblique thin films. This technique is employed ex situ in the measurement of silicon thin films fabricated at oblique incidence and modeled as aggregate microstructures formed from amorphous silicon, silicon oxide, and void in the effective medium model. The technique may also be utilized in situ as a powerful probe for the characterization of oblique thin films during their fabrication and processing.
We report an experimental study of enhanced optical birefringence in silicon thin films on glass substrates. Form anisotropy is introduced as an atomic-scale morphological structure through dynamic control of growth geometry. The resulting birefringence is large compared with naturally anisotropic crystals and is comparable to two-dimensional photonic crystals. The films are fabricated with serial bideposition onto a substrate held at a fixed tilt angle relative to the impinging vapor. Films were analyzed by spectroscopic ellipsometry and scanning electron microscopy, the latter clearly revealing form anisotropy in a morphology of bunched columns perpendicular to the deposition plane with dimensions of hundreds of nanometers and smaller. The observed linear birefringence varies with wavelength and tilt angle, with a maximum of 0.4 at a 630-nm wavelength and 0.25 at 1500 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.