How sister kinetochores attach to microtubules from opposite spindle poles during mitosis (bi-orientation) remains poorly understood. In yeast, the ortholog of the Aurora B-INCENP protein kinase complex (Ipl1-Sli15) may have a role in this crucial process, because it is necessary to prevent attachment of sister kinetochores to microtubules from the same spindle pole. We investigated IPL1 function in cells that cannot replicate their chromosomes but nevertheless duplicate their spindle pole bodies (SPBs). Kinetochores detach from old SPBs and reattach to old and new SPBs with equal frequency in IPL1+ cells, but remain attached to old SPBs in ipl1 mutants. This raises the possibility that Ipl1-Sli15 facilitates bi-orientation by promoting turnover of kinetochore-SPB connections until traction of sister kinetochores toward opposite spindle poles creates tension in the surrounding chromatin.
The inner centromere-like protein (INCENP) forms a complex with the evolutionarily conserved family of Aurora Bkinases. The INCENP-Aurora complex helps coordinate chromosome segregation, spindle behavior, and cytokinesis during mitosis. INCENP-Aurora associates with kinetochores in metaphase and with spindle microtubules in anaphase, yet the trigger for this abrupt transfer is unknown. Here we show that the conserved phosphatase Cdc14 regulated the yeast INCENP-Aurora complex, Sli15-Ipl1. Cdc14 dephosphorylated Sli15 and thereby directed the complex to spindles. Activation of Cdc14 by separase was sufficient for Sli15 dephosphorylation and relocalization. Cdc14 not only regulates mitotic exit but also modulates spindle midzone assembly through Sli15-Ipl1.
The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein timers (tFTs), fusions of two single-color fluorescent proteins that mature with different kinetics, which we use to analyze protein turnover and mobility in living cells. We fuse tFTs to proteins in yeast to study the longevity, segregation and inheritance of cellular components and the mobility of proteins between subcellular compartments; to measure protein degradation kinetics without the need for time-course measurements; and to conduct high-throughput screens for regulators of protein turnover. Our experiments reveal the stable nature and asymmetric inheritance of nuclear pore complexes and identify regulators of N-end rule–mediated protein degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.