Background: Since aging affects the immune responses against vaccination, the present study evaluated the effects of L-glutamine (Gln) supplementation in the humoral and cellular immune responses in elderly subjects, practitioners or not, of physical exercise training. Methods: Eighty-four elderly people (aged 72.6 ± 6.1), non-practitioners (NP, n = 31), and practitioners of combined-exercise training (CET, n = 53) were submitted to Influenza virus vaccination and supplemented with Gln (0.3 g/kg of weight + 10 g of maltodextrin, groups: NP-Gln (n = 14), and CET-Gln (n = 26)), or placebo (10 g of maltodextrin, groups: NP-PL (n = 17), and CET-PL (n = 27)). Blood samples were collected pre (baseline) and 30 days post-vaccination and supplementation. Results: Comparing with the baseline values, whereas the NP-Gln and CET-PL groups showed higher specific-IgM levels, the CET-Gln group showed higher specific-IgM and IgA levels post-vaccination. The titer rate of hemagglutination inhibition was higher in the CET-Gln, NP-PL, and NP-Gln groups post-vaccination than baseline values. The absolute number of naive and effector CD4+ T cells was higher especially in the NP-Gln and CET-Gln groups, whilst activated CD4+ T cells were higher in CET subgroups post-vaccination. Conclusion: Our results showed that both l-glutamine supplementation and combined-exercise training can improve the immune responses to the Influenza virus vaccine in elderly subjects.
Although regular combined aerobic-resistance exercises can ameliorate the inflammatory status and redox balance in elderly population, it is unclear whether protein or specific amino acid supplementation could improve such benefits. Therefore, we aimed to evaluate the inflammatory status and redox indexes through of the saliva of 34 elderly subject nonpractitioners (NP group, 73.3±6.6 years) and 49 elderly subject practitioners of a combined-exercise training in moderate intensity (CET group, 71.9±5.8 years) before (pre) and after (post) 30 days of supplementation with L-glutamine (Gln) or placebo (PL). Our results showed that, both in pre- and postsupplementation, the salivary levels of nitric oxide (NO⋅) and TNF-α were lower, whereas the levels of uric acid and IL-10 (as well as IL-10/TNF-α ratio) were higher in the CET groups than in the NP groups. In postsupplementation, both groups supplemented with Gln (NP-Gln and CET-Gln) showed higher salivary uric acid levels compared to baseline. In addition, lower NO⋅ levels were found in the CET-Gln group postsupplementation than presupplementation values. Whereas the CET-Gln group showed lower GSH levels postsupplementation, NP-Gln subjects showed lower GSSG levels at the same time point, both compared to baseline. Interestingly, salivary peroxidase activity was lower only in NP groups (NP-PL and NP-Gln) postsupplementation than baseline values. A positive significant correlation between salivary peroxidase activity and GSH levels, and also between salivary peroxidase activity and uric acid levels were observed in the CET-Gln group both pre- and postsupplementation. No differences were found in albumin, total antioxidant activity (TEAC), and reducing power analysis between groups, pre- or postsupplementation. In conclusion, the elderly subjects from the CET group showed a better inflammatory response and redox balance and, for the first time, it was shown that daily supplementation with Gln for 30 days can improve these benefits with putative association with a healthy aging.
Age-related decreases in muscle function lead to disabilities and are associated with negative health outcomes in older people. Although several physical tests can be used to assess physical performance, muscle strength, and power, their interpretation can be hampered by the ceiling effect of some of them. The aim of this study was to assess whether vertical jump tests are safe in terms of physical integrity and whether they are useful in assessing physical performance in forty-one robust older women. The investigation entailed an assessment of anthropometric characteristics, physical functioning tests (Short Physical Performance Battery (SPPB), sit-to-up 5 times and sit-to-up 30 s, gait speed, time-up-to-go test (TUGT)), and tests evaluating muscle strength and power (handgrip, lower limb isokinetic tests, and vertical jumping tests). Significant negative correlations were found between vertical jumping tests and BMI, body fat percentage, sit-to-up 5 times and TUGT. In addition, significant positive correlations were observed between vertical jumping tests and SPPB, gait speed, handgrip, and concentric isokinetic tests of knee muscles. No adverse events in volunteers’ physical integrity were reported during and after the performance of all physical tests. Thus, the study results showed that vertical jumping tests are safe and accurate for assessing physical performance and are useful for monitoring age-related loss of muscle performance in robust older women.
We investigated the effects of oral L-glutamine (Gln) supplementation, associated or not with physical exercises, in control of glycemia, oxidative stress, and strength/power of knee muscles in elderly women. Physically active (n = 21) and sedentary (n= 23) elderly women aged 60 to 80 years were enrolled in the study. Plasma levels of D-fructosamine, insulin, reduced (GSH) and oxidized (GSSG) glutathione, iron, uric acid, and thiobarbituric acid-reactive substances (TBARs) (lipoperoxidation product), as well as knee extensor/flexor muscle torque peak and average power (isokinetic test), were assessed pre- and post-supplementation with Gln or placebo (30 days). Higher plasma D-fructosamine, insulin, and iron levels, and lower strength/power of knee muscles were found pre-supplementation in the NPE group than in the PE group. Post-supplementation, Gln subgroups showed higher levels of GSH, GSSG, and torque peak, besides lower D-fructosamine than pre-supplementation values. Higher muscle average power and plasma uric acid levels were reported in the PE + Gln group, whereas lower insulin levels were found in the NPE + Gln than pre-supplementation values. TBARs levels were diminished post-supplementation in all groups. Gln supplementation, mainly when associated with physical exercises, improves strength and power of knee muscles and glycemia control, besides boosting plasma antioxidant capacity of elderly women.
Chronic cytomegalovirus (CMV) infection is a trigger factor for the development of immunosenescence and negatively impacts the immune response to influenza virus vaccination (IVV) in older adults. However, the role of physical exercise training in this context is unknown. Thus, the aim of this study was to investigate whether the regular practice of combined exercise training can improve the specific antibody response to IVV in CMV-seropositive older adults. Eighty older adults were distributed into two groups—non-practitioners (NP, n = 31, age = 74.06 ± 6.4 years) and practitioners of combined exercise training (CET, n = 49, age = 71.7 ± 5.8 years)—for at least 12 months. Both volunteer groups were submitted to IVV and blood samples were collected before (pre) and 30 days after (post) the vaccination. Concerning the specific antibody response to IVV, higher serum levels of specific immunoglobulin A (IgA) were found in the CET group post- than pre-vaccination (p < 0.01), whereas higher levels of specific immunoglobulin M (IgM) were observed both in the NP (p < 0.05) and CET (p < 0.001) groups post-vaccination as compared to the pre-vaccination values. Serum levels of specific immunoglobulin G (IgG) for IVV and CMV, as well as interleukin 6 (IL-6) and IL-10, were similar between the time points evaluated. However, the IL-10/IL-6 ratio post-vaccination was higher (p < 0.05) in the CET group than that before vaccination. Negative correlations were observed between the specific IgG levels for IVV and CMV only in the CET group, both pre- and post-vaccination. In addition, negative correlations were found between IL-10 and specific IgG for CMV in all volunteer groups pre- and post-vaccination, whereas a positive correlation between IL-10 and specific-IgG for IVV pre- and post-vaccination was observed in the CET group. In addition, with the hemagglutination inhibition (HAI) assay, it was found that 32.2% of the NP group and 32.6% of the CET group were responders to IVV and displayed reductions in the CMV serostatus (p < 0.05 and p < 0.001, respectively) and increases in naive and effector CD8+ T cells post-vaccination (p < 0.01). However, only the responders from the CET group showed significant reductions in the ratio of effector to naive CD8+ T cells (p < 0.05) and increased IL-10 levels post-vaccination (p < 0.001). In summary, this study demonstrates that the improvement in the response to IVV in CMV-seropositive older adults was related to an anti-inflammatory status and enhancement of naive CD8+ T cells, particularly associated with regular practice of CET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.