Bacteriocins are proteinaceous toxins produced and exported by both gram-negative and gram-positive bacteria as a defense mechanism. The bacteriocin protein family is highly diverse, which complicates the identification of bacteriocin-like sequences using alignment approaches. The use of topological indices (TIs) irrespective of sequence similarity can be a promising alternative to predict proteinaceous bacteriocins. Thus, we present Topological Indices to BioPolymers (TI2BioP) as an alignment-free approach inspired in both the Topological Substructural Molecular Design (TOPS-MODE) and Markov Chain Invariants for Network Selection and Design (MARCH-INSIDE) methodology. TI2BioP allows the calculation of the spectral moments as simple TIs to seek quantitative sequence-function relationships (QSFR) models. Since hydrophobicity and basicity are major criteria for the bactericide activity of bacteriocins, the spectral moments ((HP)μ(k)) were derived for the first time from protein artificial secondary structures based on amino acid clustering into a Cartesian system of hydrophobicity and polarity. Several orders of (HP)μ(k) characterized numerically 196 bacteriocin-like sequences and a control group made up of 200 representative CATH domains. Subsequently, they were used to develop an alignment-free QSFR model allowing a 76.92% discrimination of bacteriocin proteins from other domains, a relevant result considering the high sequence diversity among the members of both groups. The model showed a prediction overall performance of 72.16%, detecting specifically 66.7% of proteinaceous bacteriocins whereas the InterProScan retrieved just 60.2%. As a practical validation, the model also predicted successfully the cryptic bactericide function of the Cry 1Ab C-terminal domain from Bacillus thuringiensis's endotoxin, which has not been detected by classical alignment methods.
Guanine-rich sequences found in telomeres and oncogene promoters have the ability to form G-quadruplex structures. In this paper we describe the use of a virtual screening assay to search a database of FDA-approved compounds for compounds with the potential to bind G-quadruplex DNA. More than 750 telomerase inhibitors were identified in a literature search as acting through G-quadruplex stabilization, and from evaluation of these compounds, theoretical models capable of discriminating new compounds that bind G-quadruplex DNA were developed. Six compounds predicted to bind to the G-quadruplex structure were tested for their ability to bind to the human telomeric DNA sequence. Prochloroperazine, promazine, and chlorpromazine stabilized the G-quadruplex structure as determined by fluorescence resonance energy transfer techniques. These compounds also bound to promoter sequences of oncogenes such as c-myc and K-ras. Amitriptyline, imipramine, and loxapine were less stabilizing but did bind to the G-quadruplex. The ability of prochloroperazine, promazine, and chlorpromazine to recognize G-quadruplex structures was confirmed using a fluorescent intercalator displacement assay, in which displacement of thiazole orange from G-quadruplex structures was demonstrated. Interestingly, these compounds exhibited selectivity for the G-quadruplex structure as all had poor affinity for the duplex sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.