Background: As in other fields of healthcare, probiotics have been introduced for prevention and treatment of periodontal diseases. Objective: This review was initiated to explore whether the use of probiotics can influence the periodontal microbiota and periodontal health. Materials and Methods: Literature on the mode of action of oral probiotics was reviewed and a systematic review was performed on the microbiological and clinical effects of oral probiotics on periodontal health. Results: Three animal and 11 in vivo human studies were retrieved. Six studies reported on microbiological effects whereas eight studies report on clinical effects. Seven studies were performed on healthy or gingivitis patients and four studies on periodontitis patients. Many of the retrieved studies are pilot in nature and with low quality. The high degree of heterogeneity between studies hampered analysis. Conclusion: Taking into consideration all limitations, the currently available data indicate an effect of probiotics on the oral microbiota and a more limited effect on clinical periodontal outcome measures. However, there is an urgent need for properly conducted clinical trials where probiotics are used as adjuncts to standard periodontal care, similar to antibiotics, using probiotic strains with, at least at an in vitro level, proven periodontal probiotic effects.
Root resorption of maxillary lateral incisors caused by erupting canines is well known and a relatively common phenomenon. However, much debate and conflicting evidence exists with regard to the actual resorption trigger and potential etiological factors involved. Consequently, there are no obvious clinical clues concerning prevention and diagnosis as well as subsequent treatment decisions. The introduction of cone beam computer tomography has recently allowed drawing a new and much more documented light on the diagnostic and therapeutic strategies. However, no investigations have determined that this new information may result in another and better diagnostic approach and an improved treatment outcome. Therefore, the present review will attempt to summarize the existing evidence on two- and three-dimensional images and try to link the radiological observations to any further preventive, diagnostic, and/or therapeutic measures. Detection thresholds, accuracy, and reliability of impacted canine localization and neighboring root resorption risks will also be considered. This review demonstrates how adding a third-dimension to the radiographic information may notably alter the prevalence of root resorptions and descriptions of this prevalence. In any case, further investigation is needed to determine resorption detection thresholds in various two-dimensional and three-dimensional imaging techniques, as well as to determine therapeutic thresholds and criteria for strategic tooth extraction based on radiographic manifest and not manageable resorption lesions.
DNA-based methodology for the identification and detection of specific bacteria in dental plaque offers advantages over culturing techniques. One drawback of current molecular techniques like real-time quantitative polymerase chain reaction (RT-QPCR) is that they are not able to distinguish between live or dead bacteria. To overcome this problem an assay was assessed to discriminate between viable or dead bacteria using DNA intercalating substances, propidium monoazide (PMA) and ethidium monoazide (EMA) in combination with RT-QPCR. The assay was tested on oral pathogens: Streptococcus mutans, Prevotella intermedia and Aggregatibacter actinomycetemcomitans. To determine the effectiveness of EMA and PMA, different concentrations (from 5 to 100 μg ml(-1)) of the substances were added to viable or heat-killed suspensions of both organisms (ranging from 10(8) to 10(4) colony-forming units ml(-1)). Afterwards, PMA was tested on mixtures of varying ratios of viable and dead cells. After DNA extraction, RT-QPCR was performed using species-specific primers. Both compounds inhibited PCR amplification from dead cells. The EMA treatment resulted in the largest signal decrease but EMA also inhibited DNA amplification from viable cells. For this reason, PMA was selected for use in further experiments. It was shown to be efficient in allowing selective PCR detection of only viable cells in mixtures containing both viable and dead cells. The amount of amplified DNA corresponded to the percentage of viable cells in the sample. The developed assay will potentially be useful for assessing bacterial loads remaining after disinfection protocols without interference by non-viable bacteria.
Recently, the predation of Bdellovibrio bacteriovorus on a periodontal pathogen has been described. The current study explores the potential antimicrobial activity of a range of predatory bacteria against key periodontal pathogens. A number of representatives from the Bdellovibrio, Bacteriovorax and Peredibacter lineages (called 'BALOs') were tested for their activity towards a group of key periodontal pathogens and an optimal multiplicity of infection was established. As the oral cavity contains a wide variety of bacteria that are not preyed upon, it was investigated if they can have an effect on the predation efficiency of BALOs. It was concluded that a number of important variables involved in bacterial predation are found to be compatible with the composition of the oral microbiota. This finding makes the case for continued study of the potential for BALOs to combat periodontal pathogens.
Knowledge on bacterial correlations can pave the way for new treatment options focusing on restoring the shifted balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.