The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib is FDA approved for the treatment of BRCA-mutated breast, ovarian and pancreatic cancers. Olaparib inhibits PARP1/2 enzymatic activity and traps PARP1 on DNA at single-strand breaks, leading to replication-induced DNA damage that requires BRCA1/2-dependent homologous recombination repair. Moreover, DNA damage response pathways mediated by the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia mutated and Rad3-related (ATR) kinases are hypothesised to be important survival pathways in response to PARP-inhibitor treatment. Here, we show that olaparib combines synergistically with the ATR-inhibitor AZD6738 (ceralasertib), in vitro, leading to selective cell death in ATM-deficient cells. We observe that 24 h olaparib treatment causes cells to accumulate in G2-M of the cell cycle, however, co-administration with AZD6738 releases the olaparib-treated cells from G2 arrest. Selectively in ATM-knockout cells, we show that combined olaparib/AZD6738 treatment induces more chromosomal aberrations and achieves this at lower concentrations and earlier treatment time-points than either monotherapy. Furthermore, single-agent olaparib efficacy in vitro requires PARP inhibition throughout multiple rounds of replication. Here, we demonstrate in several ATM-deficient cell lines that the olaparib and AZD6738 combination induces cell death within 1-2 cell divisions, suggesting that combined treatment could circumvent the need for prolonged drug exposure. Finally, we demonstrate in vivo combination activity of olaparib and AZD6738 in xenograft and PDX mouse models with complete ATM loss. Collectively, these data provide a mechanistic understanding of combined PARP and ATR inhibition in ATM-deficient models, and support the clinical development of AZD6738 in combination with olaparib.
The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites and induces an imbalance between BRCA1 and 53BP1. Both events result in compromised accurate C-NHEJ and a concomitant increase in DNA end resection. Nevertheless, HR is significantly reduced upon PARP3 silencing while the enhanced end resection causes mutagenic deletions during A-EJ. As a result, the absence of PARP3 confers hypersensitivity to anti-tumoral drugs generating DSB.
Poly-ADP-ribose-polymerase (PARP) inhibitors have achieved regulatory approval in oncology for homologous recombination repair deficient tumors including BRCA mutation. However, some have failed in combination with first-line chemotherapies, usually due to overlapping hematological toxicities. Currently approved PARP inhibitors lack selectivity for PARP1 over PARP2 and some other 16 PARP family members, and we hypothesized that this could contribute to toxicity. Recent literature has demonstrated that PARP1 inhibition and PARP1− DNA trapping are key for driving efficacy in a BRCA mutant background. Herein, we describe the structure-and property-based design of 25 (AZD5305), a potent and selective PARP1 inhibitor and PARP1−DNA trapper with excellent in vivo efficacy in a BRCA mutant HBCx-17 PDX model. Compound 25 is highly selective for PARP1 over other PARP family members, with good secondary pharmacology and physicochemical properties and excellent pharmacokinetics in preclinical species, with reduced effects on human bone marrow progenitor cells in vitro.
Poly(ADP-ribosyl)ation is involved in numerous bio-logical processes including DNA repair, transcription and cell death. Cellular levels of poly(ADP-ribose) (PAR) are regulated by PAR polymerases (PARPs) and the degrading enzyme PAR glycohydrolase (PARG), controlling the cell fate decision between life and death in response to DNA damage. Replication stress is a source of DNA damage, leading to transient stalling of replication forks or to their collapse followed by the generation of double-strand breaks (DSB). The involvement of PARP-1 in replicative stress response has been described, whereas the consequences of a deregulated PAR catabolism are not yet well established. Here, we show that PARG-deprived cells showed an enhanced sensitivity to the replication inhibitor hydroxyurea. PARG is dispensable to recover from transient replicative stress but is necessary to avoid massive PAR production upon prolonged replicative stress, conditions leading to fork collapse and DSB. Extensive PAR accumulation impairs replication protein A association with collapsed forks resulting in compromised DSB repair via homologous recombination. Our results highlight the critical role of PARG in tightly controlling PAR levels produced upon genotoxic stress to prevent the detrimental effects of PAR over-accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.