Blastokinin or uteroglobin (UG) is a steroid-inducible, evolutionarily conserved, multifunctional protein secreted by the mucosal epithelial of virtually all mammals. It is present in the blood and in other body fluids including urine. An antigen immunoreactive to UG antibody is also detectable in the mucosal epithelia of all vertebrates. UG-binding proteins (putative receptor), expressed on several normal and cancer cell types, have been characterized. The human UG gene is mapped to chromosome 11q12.2 13.1, a region that is frequently rearranged or deleted in many cancers. The generation of UG knockout mice revealed that disruption of this gene causes: (i) severe renal disease due to an abnormal deposition of fibronectin and collagen in the glomeruli; (ii) predisposition to a high incidence of malignancies; and (iii) a lack of polychlorinated biphenyl binding and increased oxygen toxicity in the lungs. The mechanism(s) of UG action is likely to be even more complex as it also functions via a putative receptor-mediated pathway that has not yet been clearly defined. Molecular characterization of the UG receptor and signal transduction via this receptor pathway may show that this protein belongs to a novel cytokine/chemokine family.
Uteroglobin (UG) is a multifunctional, secreted protein that has receptor-mediated functions. The human UG (hUG) gene is mapped to chromosome 11q12.2-13.1, a region frequently rearranged or deleted in many cancers. Although high levels of hUG expression are characteristic of the mucosal epithelia of many organs, hUG expression is either drastically reduced or totally absent in adenocarcinomas and in viral-transformed epithelial cells derived from the same organs. In agreement with these findings, in an ongoing study to evaluate the effects of aging on UG-knockout mice, 16͞16 animals developed malignant tumors, whereas the wild-type littermates (n ؍ 25) remained apparently healthy even after 1 1 ⁄2 years. In the present investigation, we sought to determine the effects of induced-expression of hUG in human cancer cells by transfecting several cell lines derived from adenocarcinomas of various organs with an hUG-cDNA construct. We demonstrate that induced hUG expression reverses at least two of the most important characteristics of the transformed phenotype (i.e., anchorage-independent growth on soft agar and extracellular matrix invasion) of only those cancer cells that also express the hUG receptor. Similarly, treatment of the nontransfected, receptor-positive adenocarcinoma cells with purified recombinant hUG yielded identical results. Taken together, these data define receptor-mediated, autocrine and paracrine pathways through which hUG reverses the transformed phenotype of cancer cells and consequently, may have tumor suppressor-like effects.
Uteroglobin (UG) is a steroid-inducible, multifunctional, secreted protein with antiinflammatory and antichemotactic properties. Recently, we have reported a high affinity UG-binding protein (putative receptor), on several cell types, with an apparent molecular mass of 190 kDa (Kundu, G. C., Mantile, G., Miele, L., CordellaMiele, E., and Mukherjee, A. B. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 2915-2919). Since UG is a homodimer in which the 70 amino acid subunits are connected by two disulfide bonds, we sought to determine whether UG monomers also interact with the 190-kDa UG-binding protein and if so, whether it has the same biological activity as the dimer. Surprisingly, we discovered that in addition to the 190-kDa species, another protein, with an apparent molecular mass of 49 kDa, binds reduced UG with high affinity and specificity. Both 49-and 190-kDa proteins are readily detectable on nontransformed NIH 3T3 and some murine cancer cells (e.g. mastocytoma, sarcoma, and lymphoma), while lacking on others (e.g. fibrosarcoma). Most interestingly, pretreatment of the cells, which express the binding proteins, with reduced UG dramatically suppresses extracellular matrix (ECM) invasion, when such treatment had no effect on fibrosarcoma cells that lack the UG-binding proteins. Tissue-specific expression studies confirmed that while both 190-and 49-kDa UG-binding proteins are present in bovine heart, spleen, and the liver, only the 190-kDa protein is detectable in the trachea and in the lung. Neither the 190-kDa nor the 49-kDa protein was detectable in the aorta. Purification of these binding proteins from bovine spleen by UG-affinity chromatography and analysis by SDS-polyacrylamide gel electrophoresis followed by silver staining identified two protein bands with apparent molecular masses of 40 and 180 kDa, respectively. Treatment of the NIH 3T3 cells with specific cytokines (i.e. interleukin-6) and other agonists (i.e. lipopolysaccharide) caused a substantially increased level of 125 I-UG binding but the same cells, when treated with platelet-derived growth factor, tumor necrosis factor-␣, interferon-␥, and phorbol 12-myristate 13-acetate, did not alter the UG binding. Taken together, these findings raise the possibility that UG, through its binding proteins, plays critical roles in the regulation of cellular motility and ECM invasion.Some of the most important biological processes, such as inflammation, wound healing, embryo implantation, and cancer cell metastasis, involve cellular migration and invasion of the extracellular matrix (ECM).1 However, the mechanisms that regulate these processes are not clearly understood. Recent studies have focused on understanding the receptor-mediated pathways that play critical roles in regulating cellular motility and invasion of the ECM.More than three decades ago, a steroid-inducible secreted protein in the uterus of pregnant rabbits was discovered and was named blastokinin by Krishnan and Daniel (1) and uteroglobin (UG) by Beier (2). Several years later it was recogni...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.