Launched onboard the BepiColombo Mercury Planetary Orbiter (MPO) in October 2018, the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) is on its way to planet Mercury. MERTIS consists of a push-broom IR-spectrometer (TIS) and a radiometer (TIR), which operate in the wavelength regions of 7-14 μm and 7-40 μm, respectively. This wavelength region is characterized by several diagnostic spectral signatures: the Christiansen feature (CF), Reststrahlen bands (RB), and the Transparency feature (TF), which will allow us to identify and map rock-forming silicates, sulfides as well as other minerals. Thus, the instrument is particularly well-suited to study the mineralogy and composition of the hermean surface at a spatial resolution of about 500 m globally and better than 500 m for approximately 5-10% of the surface. The instrument is fully functional onboard the BepiColombo spacecraft and exceeds all requirements (e.g., mass, power, performance). To prepare for the science phase at Mercury, the team developed an innovative operations plan to maximize the scientific output while at the same time saving spacecraft resources (e.g., data downlink). The upcoming fly-bys will be excellent opportunities to further test and adapt our software and operational procedures. In summary, the team is undertaking action at multiple levels, including performing a comprehensive suite of spectroscopic measurements in our laboratories on relevant analog materials, performing extensive spectral modeling, examining space weathering effects, and modeling the thermal behavior of the hermean surface.
The study of the fluvial systems present on the Martian surface is a key in the investigation of the paleoclimate of the planet: Various indications suggest that these features could have formed under climatic conditions very different from the present one. For this reason, it seems necessary to update the previous maps of Martian valleys using newer mosaics and data at higher resolution. In this work we present a detailed global map of Martian valleys classified according to their morphology. Our data set includes all the valleys longer than 20 km mapped within the QGIS (Quantum Geographic Information System) software. With respect to previous global maps, the coupling of topographic information with data of higher image quality allowed us a better mapping of these structures at a fine scale: New small valleys and more tributaries for several systems have been observed. We mapped valleys of various typologies for a global total length of 773,559 km. The mapped valley networks cover the 69% of this total length. Moreover, a rough estimation of the valleys' age spatial distribution was performed. We found that the 94% of the mapped valleys have a maximum age consistent with an origin in the Noachian period; the 4% have a Hesperian maximum age, while the remaining 2% have a maximum age consistent with an origin in the Amazonian period. Finally, we also estimated the total eroded volume of the mapped valley networks finding a value in the order of 3 × 1014 m3 in good agreement with what found in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.