Recent studies showed that a prompt detection of the stall inception, connected with a specific model to predict its associated aerodynamic force, could provide room for an extension of the left margin of the operating curve of high-pressure centrifugal compressors. In industrial machines working in the field, however, robust procedures to detect and identify the phenomenon are still missing, i.e., the operating curve is almost ever cut preliminarily by the manufacturer by a proper safety margin; moreover, no agreement is found in the literature about a well-defined threshold to define the onset of the stall. In particular, in some cases, the intensity of the arising subsynchronous frequency is compared to the revolution frequency, while in many other ones it is compared to the blade passage frequency. A large experience in experimental stall analyses collected by the authors revealed that in some cases unexpected spikes could make this direct comparison not reliable for a robust automatic detection. To this end, a new criterion was developed based on an integral analysis of the area subtended to the entire subsynchronous spectrum of the dynamic pressure signal of probes positioned just outside the impeller exit. A dimensionless parameter was then defined to account for the spectrum area increase in proximity to stall inception. This new parameter enabled the definition of a reference threshold to highlight the arising of stall conditions, whose validity and increased robustness was here verified based on a set of experimental analyses of different types of full-stage test cases of industrial centrifugal compressors at the test rig.
The design of the volute (in terms of area distribution and shape of the cross section) has a relevant impact on the efficiency and the operating range of a centrifugal compressor. This latter aspect is even more relevant in turbochargers, where the compressor has to cover a functioning range much wider than that of industrial applications. In addition, beyond conventional aerodynamic requirements, the design of the cross section shape is driven often in these applications also by space constraints imposed by the vehicle layout, leading to a variety of volute layouts. In a previous study, some of the authors highlighted the prospects of using the entropy generation rate to evaluate the losses within a volute, since this parameter allows an exact localization of irreversibilities. Starting from these results, the present study shows the suitability of this parameter as an indicator for the fine design optimization of the volute shape. A methodology is presented, which, based on the CFD computed contours of both the entropy generation rate and the total pressure, is able to drive the fine optimization of the volute cross-section at different azimuthal positions in order to maximize its efficiency. Multiple volute shapes are analysed in the paper and the effect of the operating conditions is accounted for by investigating different mass flow rates. The proposed approach indeed lead to a maximization of the volute efficiency with only a few trials and it could indeed provide room for future automatized fine optimization strategies.
Recent studies showed that a prompt detection of the stall inception, connected with a specific model to predict its associated aerodynamic force, could provide room for an extension of the left margin of the operating curve of high-pressure centrifugal compressors. In industrial machines working in the field, however, robust procedures to detect and identify the phenomenon are still missing, i.e. the operating curve is almost ever cut preliminary by the manufacturer by a proper safety margin; moreover, no agreement is found in the literature about a well-defined threshold to define the onset of the stall. In particular, in some cases the intensity of the arising subsynchronous frequency is compared to the revolution frequency, while in many other ones it is compared to the blade passage frequency. A large experience in experimental stall analyses collected by the authors revealed that in some cases unexpected spikes could make this direct comparison not reliable for a robust automatic detection. To this end, a new criterion was developed based on an integral analysis of the area subtended to the entire subsynchronous spectrum of the dynamic pressure signal of probes positioned just outside the impeller exit. A dimensionless parameter was then defined to account for the spectrum area increase in proximity to stall inception. This new parameter enabled the definition of a reference threshold to highlight the arising of stall conditions, whose validity and increased robustness was here verified based on a set of experimental analyses of different types of full-stage test cases of industrial centrifugal compressors at the test rig.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.