Fetal sex differences play an important role in the pathophysiology of several placenta related pregnancy complications. We previously reported that the maternal circulating level of a polyamine metabolite was altered in a fetal sex-specific manner, and was associated with pre-eclampsia and fetal growth restriction. Here we show that placental polyamine metabolism is altered in these disorders and that polyamines influence widespread changes in gene expression by regulating the availability of acetyl CoA which is necessary for histone acetylation. Sex differences in polyamine metabolism are associated with escape from X chromosome inactivation of the gene encoding the enzyme spermine synthase in female placentas, as evidenced by biallelic expression of the gene in female trophoblasts. Polyamine depletion in primary human trophoblasts impairs glycolysis and mitochondrial metabolism resulting in decreased availability of acetyl-CoA and global histone hypoacetylation, in a sex-dependent manner. Chromatin immunoprecipitation sequencing and RNA sequencing identifies downregulation of progesterone biosynthetic pathways as a key target and polyamine depletion reduced progesterone release in male trophoblasts. Collectively, these findings suggest that polyamines regulate placental endocrine function through metabolic regulation of gene expression, and that sex differences in polyamine metabolism due to XCI escape may buffer the effects of placental dysfunction in pregnancy disorders.
We have recently demonstrated that the human placenta exhibits a unique genomic architecture with an unexpectedly high mutation burden(Coorens et al. 2021) and it is also well recognized that the placenta uniquely expresses many genes(Gong et al. 2021). However, the placenta is relatively understudied in systematic comparisons of gene expression in different organs. The aim of the present study was to identify transcripts which were uniquely absent or depleted, comparing the placenta with 46 other human organs. Here we show that 40/46 of the other organs had no transcripts which were selectively depleted and that of the remaining six, the liver had the largest number with 26. In contrast, the term placenta had 762 depleted transcripts. Gene Ontology analysis of this depleted set highlighted multiple pathways reflecting known unique elements of placental physiology. However, analysis of term samples demonstrated massive over representation of genes involved in mitochondrial function (P=5.8x10-10), including PGC-1α - the master regulator of mitochondrial biogenesis, and genes involved in polyamine metabolism (P=2.1x10-4). We conclude that the term placenta exhibits a unique metabolic environment.
Placental function and dysfunction differ by sex but the mechanisms are unknown. Here we show that sex differences in polyamine metabolism are associated with escape from X chromosome inactivation of the gene encoding spermine synthase (SMS). Female placental trophoblasts demonstrate biallelic SMS expression, associated with increased SMS mRNA and enzyme activity. Polyamine depletion in primary trophoblasts reduced glycolysis and oxidative phosphorylation resulting in decreased acetyl-coA availability and global histone hypoacetylation in a sex-dependent manner. Chromatin-immunoprecipitation sequencing and RNA-sequencing identifies progesterone biosynthesis as a target of polyamine regulated gene expression, and polyamine depletion reduced progesterone release in male trophoblasts. The effects of polyamine depletion can be attributed to spermine as SMS-silencing recapitulated the effects on energy metabolism, histone acetylation, and progesterone release. In summary, spermine metabolism alters trophoblast gene expression through acetyl-coA biosynthesis and histone acetylation, and SMS escape from X inactivation explains some features of human placental sex differences.
Human trophoblast cultures provide powerful tools to model key processes of placental development. In vitro trophoblast studies to date have relied on commercial media which contains non-physiological levels of nutrients, and the impact of these conditions on trophoblast metabolism and function is unknown. Here we show that the physiological medium (Plasmaxä) with nutrient and metabolite concentrations recapitulating human plasma improves human trophoblast stem cell (hTSC) proliferation and differentiation compared to standard medium (DMEM-F12). hTSCs cultured in Plasmax-based medium also show altered glycolytic and mitochondrial metabolism, as well as reduced S-adenosylmethionine/S-adenosyl-homosysteine ratio compared to DMEM-F12-based medium. These findings demonstrate the importance of the nutritional environment for phenotyping cultured human trophoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.