Insulation for circuit regulation Lipid-rich myelin, which wraps around and insulates neuronal axons, improves the speed and efficiency of signal propagation. Myelination is not universally applied in the central nervous system, and even axons within the same circuit can vary in the amount of myelination they carry. Bonetto et al . reviewed what is known about how such variability can affect computational functions in brain circuits. Myelin plasticity may be one mechanism linking experiential learning to modified brain connections. Whether you are learning to juggle or learning to read, changes in myelination may tune the circuits underlying those skills. —PJH
BNN27, a member of a chemical library of C17-spiroepoxy derivatives of the neurosteroid DHEA, has been shown to regulate neuronal survival through its selective interaction with NGF receptors (TrkA and p75 ), but its role on glial populations has not been studied. Here, we present evidence that BNN27 provides trophic action (rescue from apoptosis), in a TrkA-dependent manner, to mature oligodendrocytes when they are challenged with the cuprizone toxin in culture. BNN27 treatment also increases oligodendrocyte maturation and diminishes microglia activation in vitro. The effect of BNN27 in the cuprizone mouse model of demyelination in vivo has also been investigated. In this model, that does not directly involve the adaptive immune system, BNN27 can protect from demyelination without affecting the remyelinating process. BNN27 preserves mature oligodendrocyte during demyelination, while reducing microgliosis and astrogliosis. Our findings suggest that BNN27 may serve as a lead molecule to develop neurotrophin-like blood-brain barrier (BBB)-permeable protective agents of oligodendrocyte populations and myelin, with potential applications in the treatment of demyelinating disorders.
Plasticity in the central nervous system (CNS) allows for responses to changing environmental signals. While the majority of studies on brain plasticity focus on neuronal synapses, myelin plasticity has now begun to emerge as a potential modulator of neuronal networks. Oligodendrocytes (OLs) produce myelin, which provides fast signal transmission, allows for synchronization of neuronal inputs, and helps to maintain neuronal function. Thus, myelination is also thought to be involved in learning. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. This process is orchestrated by numerous cellular and molecular signals, such as axonal diameter, growth factors, extracellular signaling molecules, and neuronal activity. However, the relative importance of, and cooperation between, these signaling pathways is currently unknown. In this review, we focus on the current knowledge about myelin plasticity in the CNS. We discuss new insights into the link between this type of plasticity, learning and behavior, as well as mechanistic aspects of myelin formation that may underlie myelin plasticity, highlighting OPC diversity in the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.