Artificial light at night (ALAN), termed light pollution, is an increasingly important anthropogenic environmental pressure on wildlife. Exposure to unnatural lighting environments may have profound effects on animal physiology, particularly during early life. Here, we experimentally investigated for the first time the impact of ALAN on body mass and oxidative status during development, using nestlings of a free-living songbird, the great tit (Parus major), an important model species. Body mass and blood oxidative status were determined at baseline (=13 days after hatching) and again after a two night exposure to ALAN. Because it is very difficult to generalise the oxidative status from one or two measures we relied on a multi-biomarker approach. We determined multiple metrics of both antioxidant defences and oxidative damage: molecular antioxidants GSH, GSSG; antioxidant enzymes GPX, SOD, CAT; total non-enzymatic antioxidant capacity and damage markers protein carbonyls and TBARS. Light exposed nestlings showed no increase in body mass, in contrast to unexposed individuals. None of the metrics of oxidative status were affected. Nonetheless, our study provides experimental field evidence that ALAN may negatively affect free-living nestlings’ development and hence may have adverse consequences lasting throughout adulthood.
Light pollution or artificial light at night (ALAN) is increasingly recognised to be an important anthropogenic environmental pressure on wildlife, affecting animal behaviour and physiology. Early life experiences are extremely important for the development, physiological status and health of organisms, and as such, early exposure to artificial light may have detrimental consequences for organism fitness. We experimentally manipulated the light environment of free-living great tit nestlings (Parus major), an important model species in evolutionary and environmental research. Haptoglobin (Hp) and nitric oxide (NOx), as important indicators of immunity, health, and physiological condition, were quantified in nestlings at baseline (13 days after hatching) and after a two night exposure to ALAN. We found that ALAN increased Hp and decreased NOx. ALAN may increase stress and oxidative stress and reduce melatonin which could subsequently lead to increased Hp and decreased NOx. Haptoglobin is part of the immune response and mounting an immune response is costly in energy and resources and, trade-offs are likely to occur with other energetically demanding tasks, such as survival or reproduction. Acute inhibition of NOx may have a cascading effect as it also affects other physiological aspects and may negatively affect immunocompetence. The consequences of the observed effects on Hp and NOx remain to be examined. Our study provides experimental field evidence that ALAN affects nestlings' physiology during development and early life exposure to ALAN could therefore have long lasting effects throughout adulthood.
1. There is considerable interest of evolutionary ecologists in the proximate mechanisms that constrain life-history variation. It is increasingly recognized that oxidative stress may be a prime physiological constraint on reproduction, but to the best of our knowledge, this has never been tested experimentally. 2. To fill in this gap, we examined whether a specific and short-term experimental increase of pre-reproductive oxidative stress in females of a songbird (canary, Serinus canaria) would influence reproductive decisions (i.e. when and how many eggs to lay), and reproductive success (hatching and fledging success, number of hatchlings and of fledglings produced by each female), as compared to females whose oxidative stress levels were not manipulated. 3. Our experimental reduction of glutathione, a key antioxidant, increased oxidative stress and affected reproductive decisions: treated females significantly delayed the start of egg laying and laid significantly smaller clutches. However, both hatching and fledging success and the number of hatchlings and of fledglings produced by each female were similar between control and treated females. 4. Our results support the hypothesis that oxidative stress may be one proximate mechanism modulating key life-history traits (such as the timing of laying and clutch size in birds) and therefore may act as a link between prevailing environmental conditions and fitness traits.
A central principle of life-history theory is that parents trade investment in reproduction against that in body maintenance. One physiological cost thought to be important as a modulator of such trade-off is oxidative stress. Experimental support for this hypothesis has, however, proved to be contradictory. In this study, we manipulated the nestling rearing effort of captive canaries (Serinus canaria) soon after the hatching of their nestlings using a brood-size manipulation to test whether an increase in nestling rearing effort translates into an increase in oxidative damage, an increase in ceruloplasmin (which is upregulated in response to oxidative damage) and a decrease in thiol antioxidants. We also compared the blood oxidative stress level of reproducing birds with that of nonreproducing birds, a crucial aspect that most studies have invariably failed to include in tests of the oxidative cost of reproduction. Compared with non-breeding canaries and pre-manipulation values, plasma oxidative damage (reactive oxygen metabolites and protein carbonyls) decreased in breeding canaries irrespective of sex and brood size. In contrast, oxidative damage did not change in nonbreeding birds over the experiment. Ceruloplasmin activity in plasma and both non-protein and protein thiols in red blood cells did not change throughout the experiment in both treatment groups. Our results suggest that reproduction may result in decreased rather than increased blood oxidative stress. Our results may explain some of the inconsistencies that have so far been reported in experimental tests of the oxidative cost of reproduction hypothesis.
Urbanization is associated with dramatic increases in noise and light pollution, which affect animal behaviour, physiology and fitness. However, few studies have examined these stressors simultaneously. Moreover, effects of urbanization during early-life may be detrimental but are largely unknown. In developing great tits (Parus major), a frequently-used model species, we determined important indicators of immunity and physiological condition: plasma haptoglobin (Hp) and nitric oxide (NOx) concentration. We also determined fledging mass, an indicator for current health and survival. Associations of ambient noise and light exposure with these indicators were studied. Anthropogenic noise, light and their interaction were unrelated to fledging mass. Nestlings exposed to more noise showed higher plasma levels of Hp but not of NOx. Light was unrelated to Hp and NOx and did not interact with the effect of noise on nestlings’ physiology. Increasing levels of Hp are potentially energy demanding and trade-offs could occur with life-history traits, such as survival. Effects of light pollution on nestlings of a cavity-nesting species appear to be limited. Nonetheless, our results suggest that the urban environment, through noise exposure, may entail important physiological costs for developing organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.