An organic ultralow voltage field effect transistor for DNA hybridization detection is presented. The transduction mechanism is based on a field-effect modulation due to the electrical charge of the oligonucleotides, so label-free detection can be performed. The device shows a sub-nanometer detection limit and unprecedented selectivity with respect to single nucleotide polymorphism.
Paper is drawing considerable attention as a possible alternative to plastic for the development of flexible electronics. Indeed, in order to reduce excessive plastic consumption and waste, paper is attractive thanks to its renewable nature, low cost, ubiquity, and flexibility. A simple, cost‐effective, and low‐temperature approach, based on inkjet‐printing, is presented for the development of low‐voltage, all‐organic field‐effect transistors on commercial paper. Both n‐ and p‐type transistors are developed with reproducible electrical performances, such as low operating voltages (not exceeding 5 V) and quasi‐zero threshold voltages. Moreover, the fabricated devices are characterized by a remarkable mechanical stability, as they can be deformed even at small bending radii without any significant degradation of their performances. Finally, as a proof‐of‐concept for this technology, complementary electronic circuits are fabricated and tested as basic building blocks for future development of complex flexible electronics on paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.