In this work, we exploited an integrated approach combining systematic analysis of cytotoxicity, angiogenic potential, and metabolomics to shed light on the effects of graphene oxide (GO) on primary human endothelial Huvec cells. Contrary to the outcomes observed in immortalized cell lines able to internalize a similar amount of GO, significant toxicity was found in Huvec cells at high GO concentrations (25 and 50 μg/mL). In particular, we found that the steric hindrance of GO intracellular aggregates perturbed the correct assembly of cytoskeleton and distribution of mitochondria. This was found to be primarily associated with oxidative stress and impairment of cell migration, affecting the formation of capillary-like structures. In addition, preliminary metabolomics characterization demonstrated that GO affects the consumption of niacinamide, a precursor of energy carriers, and several amino acids involved in the regulation of angiogenesis. Our findings suggest that GO acts at different cellular levels, both directly and indirectly. More precisely, the combination of the physical hindrance of internalized GO aggregates, induction of oxidative stress, and alteration of some metabolic pathways leads to a significant antiangiogenic effect in primary human endothelial cells.
Chemokine-induced chemotaxis mediates physiological and pathological immune cell trafficking, as well as several processes involving cell migration. Among them, the role of CXCL12/CXCR4 signaling in cancer and metastasis is well known, and CXCR4 has been often targeted with small molecule-antagonists or short CXCL12-derived peptides to limit the pathological processes of cell migration and invasion. To reduce CXCR4-mediated chemotaxis, we adopted a different approach. We manufactured poly(lactic acid-co-glycolic acid) (PLGA)/Pluronic F127 nanoparticles through microfluidics-assisted nanoprecipitation and functionalized them with streptavidin to docking a biotinylated CXCL12 to be exposed on the nanoparticle surface. Our results show that CXCL12-decorated nanoparticles are non-toxic and do not induce inflammatory cytokine release in THP-1 monocytes cultured in fetal bovine and human serum-supplemented media. The cell internalization of our chemokine receptor-targeting particles increases in accordance with CXCR4 expression in FBS/medium. We demonstrated that CXCL12-decorated nanoparticles do not induce cell migration on their own, but their pre-incubation with THP-1 significantly decreases CXCR4+-cell migration, thereby antagonizing the chemotactic action of CXCL12. The use of biodegradable and immune-compatible chemokine-mimetic nanoparticles to reduce cell migration opens the way to novel antagonists with potential application in cancer treatments and inflammation.
The development of a colorimetric mono-varietal discriminating assay, aimed at improving traceability and quality control checks of durum wheat products, is described. A single nucleotide polymorphism (SNP) was identified as a reliable marker for wheat varietal discrimination, and a rapid test for easy and clear identification of specific wheat varieties was developed. Notably, an approach based on the loop-mediated isothermal amplification reaction (LAMP) as an SNP discrimination tool, in combination with naked-eye visualization of the results, was designed and optimized. Our assay was proven to be effective in the detection of adulterated food products, including both substitution and mixing with different crop varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.