The development of edible electronics and robotics represents a novel opportunity in several application scenarios, from food monitoring and healthcare to search and rescue. In this context, the EU-funded ROBOFOOD project aims to merge food science, robotics, and engineering to study the possible application of food-derived materials in traditional electronic and robotic components. Besides the possible out-of-body applications, the use of food-derived materials holds great potential for gastrointestinal (GI) monitoring. Avoiding the use of toxic materials, digestible sensorsi.e. diagnostic food -can reduce the risk of poisoning and retention in case of device malfunctioning, limiting the need for surgical extractions.Here we present an edible pressure-induced contact-resistance pressure sensor made of a gelatin-based body, an activated carbon conductive coating, printed gold electrodes and an ethyl cellulose substrate. Preliminary results show that the sensor is successful in detecting pressure changes above a certain threshold depending on the diaphragm height. For a device with a height of 500 µm, the pressure threshold was between 20.3 and 25.3 g/cm 2 . While further developments are required to enable the use of the sensor in real-case scenarios, this work represents a first proof-of-concept of diagnostic food.
Edible electronics and robotics are emerging areas intimately bridging food science and engineering to deliver technology using food‐derived materials. Edible devices offer unprecedented opportunities thanks to features such as bioresorbability, nutritional value, associated taste, minimal toxicity, and sustainability. However, several challenges need to be addressed to bring edible devices closer to reality. Although prototypal edible sensors are available, rotation sensors—an essential component for orientation perception—are still missing. Integrating sensors, actuators, and structural components into an edible system also remains a challenge due to the lack of processes and standardization. Here the first edible tilt sensor is presented. Starting from a commercial nonedible bistable tilt sensor, each material is replaced with edible equivalents using simple and straightforward fabrication approaches. Its functionality is validated in the first implementation of an autonomous and partly edible rolling robot, which has a nutritional value of 807.5 kcal and integrates gelatin actuators, an array of tilt sensors, and an edible wheeled frame. The robot works in closed loop, perceiving its orientation and input for actuation from the sensors. These findings may pave the way to novel edible technologies, from drug delivery for wild animals to health applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.