Imatinib is effective for the treatment of chronic myeloid leukemia (CML). However even undetectable BCR-ABL1 by Q-RT-PCR does not equate to eradication of the disease. Digital-PCR (dPCR), able to detect 1 BCR-ABL1 positive cell out of 10 7 , has been recently developed. The ISAV study is a multicentre trial aimed at validating dPCR to predict relapses after imatinib discontinuation in CML patients with undetectable Q-RT-PCR. CML patients under imatinib therapy since more than 2 years and with undetectable PCR for at least 18 months were eligible. Patients were monitored by standard Q-RT-PCR for 36 months. Patients losing molecular remission (two consecutive positive Q-RT-PCR with at least 1 BCR-ABL1/ABL1 value above 0.1%) resumed imatinib. The study enrolled 112 patients, with a median follow-up of 21.6 months. Fifty-two of the 108 evaluable patients (48.1%), relapsed; 73.1% relapsed in the first 9 months but 14 late relapses were observed between 10 and 22 months. Among the 56 not-relapsed patients, 40 (37.0% of total) regained Q-RT-PCR positivity but never lost MMR. dPCR results showed a significant negative predictive value ratio of 1.115 [95% CI: 1.013-1.227]. An inverse relationship between patients age and risk of relapse was evident: 95% of patients <45 years relapsed versus 42% in the class 45 to <65 years and 33% of patients 65 years [P(v 2 ) < 0.0001]. Relapse rates ranged between 100% (<45 years, dPCR1) and 36% (>45 years, dPCR-). Imatinib can be safely discontinued in the setting of continued PCR negativity; age and dPCR results can predict relapse.
DNA methylation is a heritable epigenetic mark that plays a key role in regulating gene expression. Mathematical modeling has been extensively applied to unravel the regulatory mechanisms of this process. In this study, we aimed to investigate DNA methylation by performing a high-depth analysis of particular loci, and by subsequent modeling of the experimental results. In particular, we performed an in-deep DNA methylation profiling of two genomic loci surrounding the transcription start site of the D-Aspartate Oxidase and the D-Serine Oxidase genes in different samples (n = 51). We found evidence of cell-to-cell differences in DNA methylation status. However, these cell differences were maintained between different individuals, which indeed showed very similar DNA methylation profiles. Therefore, we hypothesized that the observed pattern of DNA methylation was the result of a dynamic balance between DNA methylation and demethylation, and that this balance was identical between individuals. We hence developed a simple mathematical model to test this hypothesis. Our model reliably captured the characteristics of the experimental data, suggesting that DNA methylation and demethylation work together in determining the methylation state of a locus. Furthermore, our model suggested that the methylation status of neighboring cytosines plays an important role in this balance.
Unresectable neuroendocrine neoplasms (NENs) often poorly respond to standard therapeutic approaches. Alkylating agents, in particular temozolomide, commonly used to treat high-grade brain tumors including glioblastomas, have recently been tested in advanced or metastatic NENs, where they showed promising response rates. In glioblastomas, prediction of response to temozolomide is based on the assessment of the methylation status of the MGMT gene, as its product, O-6-methylguanine-DNA methyltransferase, may counteract the damaging effects of the alkylating agent. However, in NENs, such a biomarker has not been validated yet. Thus, we have investigated MGMT methylation in 42 NENs of different grades and from various sites of origin by two different approaches: in contrast to methylation-specific PCR (MSP), which is commonly used in glioblastoma management, amplicon bisulfite sequencing (ABS) is based on high resolution next-generation sequencing and interrogates several additional CpG sites compared to those covered by MSP. Overall, we found MGMT methylation in 74% (31/42) of the NENs investigated. A higher methylation degree was observed in well-differentiated tumors and in tumors originating in the gastrointestinal tract. Comparing MSP and ABS results, we demonstrate that the region analyzed by the MSP test is sufficiently informative of the MGMT methylation status in NENs, suggesting that this predictive parameter could routinely be interrogated also in NENs
The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.