Communication can be considered as a joint action that involves two or more individuals transmitting different information. In particular, non-verbal communication involves body movements used to communicate different information, characterized by the use of specific gestures. The present study aims to investigate the electrophysiological (EEG) correlates underlying the use of affective, social, and informative gestures during a non-verbal interaction between an encoder and decoder. From the results of the single brain and inter-brain analyses, an increase of frontal alpha, delta, and theta brain responsiveness and inter-brain connectivity emerged for affective and social gestures; while, for informative gestures, an increase of parietal alpha brain responsiveness and alpha, delta, and theta inter-brain connectivity was observed. Regarding the inter-agents’ role, an increase of frontal alpha activity was observed in the encoder compared to the decoder for social and affective gestures. Finally, regarding gesture valence, an increase of theta brain responsiveness and theta and beta inter-brain connectivity was observed for positive gestures on the left side compared to the right one. This study, therefore, revealed the function of the gesture type and valence in influencing individuals’ brain responsiveness and inter-brain connectivity, showing the presence of resonance mechanisms underlying gesture execution and observation.
Conscious, pre-conscious, and unconscious mechanisms are implicated in modulating affective processing in daily activities. Specifically, mental practice fostering awareness and control of affective reactions to external stimuli and stressful events (such as mindfulness and neurofeedback protocols) can be used to improve our ability to manage unconscious negative emotions. Indeed, it is possible to empower self-monitoring and regulation skills, as well as our ability to manage stress and negative emotions coming from everyday events and activities. This can be accomplished, on the one hand, by regularly practicing self-observation and by promoting bodily awareness and an awareness of automatic responses (e.g., uncontrolled affective reactions); on the other hand, by undergoing implicit training protocols that take advantage of brain responses. The present paper elucidates the contribution of both conscious and unconscious levels in emotion regulation and stress management, with a focus on their neural correlates and their role in mindfulness practice and on the potential of body-sensing devices for supporting meditation sessions, for fostering motivation to practice, and for making meditation more appealing and sustainable. We will finally present preliminary evidence on the effect of an intensive technology-mediated meditation protocol based on mindfulness practices and supported by a brain-sensing wearable device. The experimental procedure included three levels of outcome indices: psychometric measures related to perceived stress; neuropsychological and behavioural measures related to cognitive performance; and instrumental measures (resting-state and task-related electroencephalographic markers-EEG-ERPs).
Recent research in social neuroscience has shown how prosocial behavior can increase perceived selfefficacy, perception of cognitive abilitites and social interactions. The present research explored the effect of prosocial behavior, that is giving a gift during an interpersonal exchange, measuring the hyperscanning among two brains. The experiment aimed to analyze the behavioral performance and the brain-to-brain prefrontal neural activity of 16 dyads during a joint action consisting in a cooperative game, which took place in a laboratory setting controlled by an experimenter, to play before and after a gift exchange. Two different types of gift exchange were compared: experiential and material. Functional Near Infrared Spectroscopy (fNIRS) was applied to record brain activity. Inter-brain connectivity was calculated before and after the gift exchange. In behavioral data, a behavioral performance increase was observed after gift exchange, with accuracy improvement and response times decrease. Regarding intra-brain analyses, an increase in oxygenated hemoglobin was detected, especially in the dorsolateral prefrontal cortex (DLPFC) in both donor and receiver; and in the dorsal part of the premotor cortex (DPMC) in the donor. Moreover, as regards the gift type, greater activation in the DPLFC emerged in both the donor and the receiver after receiving an experiential gift. Finally, the results of the inter-brain connectivity analysis showed that after gift exchange, the donor and receiver brain activity was more synchronized in the DPMC and Frontal Eye Fields (FEF) areas. The present study provides a contribution to the identification of inter-brain functional connectivity when prosocial behaviors are played out. Keywords Prosocial behavior . Hyperscanning . Inter-brain activity . Intra-brain activity . Gift exchange
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.