The clinical diagnosis of synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), is challenging, especially at an early disease stage, due to the heterogeneous and often nonspecific clinical manifestations. The discovery of reliable specific markers for synucleinopathies would consequently be of great aid to the diagnosis and management of these disorders. Real-Time Quaking-Induced Conversion (RT-QuIC) is an ultrasensitive technique that has been previously used to detect self-templating amyloidogenic proteins in the cerebrospinal fluid (CSF) and other biospecimens in prion disease and synucleinopathies. Using a wild-type recombinant α-synuclein as a substrate, we applied RT-QuIC to a large cohort of 439 CSF samples from clinically well-characterized, or post-mortem verified patients with parkinsonism or dementia. Of significance, we also studied patients with isolated REM sleep behavior disorder (iRBD) (n = 18) and pure autonomic failure (PAF) (n = 28), representing clinical syndromes that are often caused by a synucleinopathy, and may precede the appearance of parkinsonism or cognitive decline. The results show that our RT-QuIC assay can accurately detect α-synuclein seeding activity across the spectrum of Lewy Body (LB)-related disorders (LBD), including DLB, PD, iRBD, and PAF, with an overall sensitivity of 95.3%. In contrast, all but two patients with MSA showed no α-synuclein seeding activity in the applied experimental setting. The analysis of the fluorescence response reflecting the amount of α-synuclein seeds revealed no significant differences between the clinical syndromes associated with LB pathology. Finally, the assay demonstrated 98% specificity in a neuropathological cohort of 101 cases lacking LB pathology. In conclusion, α-synuclein RT-QuIC provides an accurate marker of synucleinopathies linked to LB pathology and may have a pivotal role in the early discrimination and management of affected patients. The finding of no α-synuclein seeding activity in MSA seems to support the current view that MSA and LBD are associated with different conformational strains of α-synuclein.
Sleep disorders (SDs) are one of the most frequent non-motor symptoms of Parkinson’s disease (PD), usually increasing in frequency over the course of the disease and disability progression. SDs include nocturnal and diurnal manifestations such as insomnia, REM sleep behavior disorder, and excessive daytime sleepiness. The causes of SDs in PD are numerous, including the neurodegeneration process itself, which can disrupt the networks regulating the sleep–wake cycle and deplete a large number of cerebral amines possibly playing a role in the initiation and maintenance of sleep. Despite the significant prevalence of SDs in PD patients, few clinical trials on SDs treatment have been conducted. Our aim is to critically review the principal therapeutic options for the most common SDs in PD. The appropriate diagnosis and treatment of SDs in PD can lead to the consolidation of nocturnal sleep, the enhancement of daytime alertness, and the amelioration of the quality of life of the patients.
Giant colonic diverticulum is a rare manifestation of diverticular diseases. Surgical treatment, consisting predominantly of colonic resection with en bloc resection of the diverticulum, is the preferred option for GCD and guarantees excellent results.
We revealed 3 candidate biomarkers for PD. miRNAs 30b-5p and 29a-3p replicated a documented deregulation in PD albeit opposite to published data, while for miR-103a-3p, we demonstrated for the first time an overexpression in treated patients with PD. Expression studies in patients and/or in isolated peripheral blood mononuclear cells before and after L-dopa administration are necessary to define the involvement of L-dopa treatment in the observed overexpression. Our in silico analysis to prioritize targets of deregulated miRNAs identified candidate target genes, including genes related to neurodegeneration and PD. Despite the preliminary character of our study, the results provide a rationale for further clarifying the role of the identified miRNAs in the pathogenesis of PD and for validating their diagnostic potential.
Background The risk of COVID‐19 and related death in people with Parkinson's disease or parkinsonism is uncertain. The aim of the study was to assess the risk of hospitalization for COVID‐19 and death in a cohort of patients with Parkinson's disease or parkinsonism compared with a control population cohort, during the epidemic bout (March–May 2020) in Bologna, northern Italy. Methods Participants of the ParkLink study with the clinical diagnosis of Parkinson's disease or parkinsonism and people anonymously matched (ratio 1:10) for sex, age, district, and Charlson Index were included. The hospital admission rate for COVID‐19 (February 26–May 31, 2020) and the death rate for any cause were the outcomes of interest. Results The ParkLink cohort included 696 subjects with Parkinson's disease and 184 with parkinsonism, and the control cohort had 8590 subjects. The 3‐month hospitalization rate for COVID‐19 was 0.6% in Parkinson's disease, 3.3% in parkinsonism, and 0.7% in controls. The adjusted hazard ratio (age, sex, district, Charlson Index) was 0.8 (95% CI, 0.3–2.3, P = 0.74) in Parkinson's disease and 3.3 (1.4–7.6, P = 0.006) in parkinsonism compared with controls. Twenty‐nine of the infected subjects died; 30‐day fatality rate was 35.1%, without difference among the 3 groups. Six of 10 Parkinson's disease/parkinsonism patients had the infection during hospitalization or in a nursing home. Conclusions Parkinson's disease per se probably is not a risk factor for COVID‐19 hospitalization. Conversely, parkinsonism is an independent risk factor probably because of a more severe health status, entailing higher care dependence and placement in high‐infection‐risk accommodations. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.