In the world of cultural heritage, a wide range of artefacts and buildings are made of wood and, therefore, are subjected to moisture-induced stress and strain cycles, owing to environmental fluctuations. Simultaneous action of moisture and mechanical loads lead to a mechanosorptive effect on wood. Therefore, an increase in time-dependent creep, due to mechanical loads, is observed. The assessment of these complex phenomena entails the use of advance and interdisciplinary approaches. Consequently, this article reviews experimental and mathematical methods to study these degradation mechanisms in wooden artefacts and timber elements in heritage buildings. The paper presents the results of a six-step descriptive literature review, providing an overall picture of the ongoing research. Experimental techniques need to be improved so that they are in line with the conservation principles. The combination of experiments and simulations is a reliable predictive approach for better assessing the potential risk damages due to temperature, humidity cycles, and mechanical loads in complex structures. Thus, advanced numerical simulations and mathematical modelling include climate data and experimental measurements. This work also provides an overview of research performed on different categories of cultural heritage characterised by multi-layer structures. The mechanical response to wood–moisture relation is affected by the level of complexity of these structures. Finally, the use of realistic models is limited by knowledge about the material properties and the behaviour of complex structures over time. In addition, research gaps, limitations, and possible future research directions are also provided. This review may represent a starting point for future research on the thermo-hygro-mechanical behaviour of wood heritage.
Climate change is expected to significantly affect the interior climate of old, leaky buildings without HVAC systems. As a result, the items of cultural significance that are hosted indoors will experience new ambient conditions, which will affect their degradation. In the current research, the impact of climate change on the biological, mechanical, and chemical degradation of a cabinet and a storage trunk which are made of wood and have paintings on their outer surface is investigated. These two items are found in two different rooms of a historic timber building in Vestfold, Norway. Data from the REMO2015 driven by the global model MPI-ESM-LR are used in order to account for past, present, and future climate conditions. In addition, climate data from ERA5 reanalysis are used in order to assess the accuracy of the MPI-ES-LR_REMO2015 model results. Whole building hygrothermal simulations are employed to calculate the temperature and the relative humidity inside the rooms that host the items of interest. The transient hygrothermal condition and certain characteristics of the timber surfaces are used as inputs in models that describe their degradation. The biological degradation is examined by using i) the updated VTT mould model and ii) the Growing Degree Days (GDD) for temperature and humidity dependant insects. The mechanical deterioration is assessed by the method proposed by Mecklenburg et al. (1998). The concept of the Lifetime Multiplier (LM) is used in order to assess the chemical deterioration of the furniture. Results reveal a significant mechanical degradation risk and a very high chemical deterioration risk. The biodeterioration risk remains at acceptable levels. Moreover, it could be possible that the storage trunk would be damaged by certain insects in the future. It is then suggested that both items should be moved to a room with proper conditions in order to minimize their chemical and mechanical deterioration risk and extend their life span. Finally, the significance of implementing bias correction in the data from climate models is underlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.