Surface (S)-layers are cryptic structures that coat the external surface of the bacterial cell in many species. The paracrystalline regularity of the S-layer is due to the self-assembling of one or more protein units. The property of self-assembling seems to be mediated by specific topologies of the S-layer proteins as well as the presence of specific ions that provide support in building and stabilizing the bi-dimensional S-layer organization. In the present study, we have investigated the self-assembling mechanism of the main S-layer protein of Deinococcus radiodurans (DR_2577) finding an unusual role played by Fe 3+ and Cu 2+ in the oligomerization of this protein. These findings may trace a structural and functional metallo-mediated convergence between the role of these metals in the assembling of the S-layer and their well-known roles in protecting against oxidative stress in D. radiodurans .
(1) Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases characterized by chronic hepatic inflammation and progressive liver fibrosis. The possible use of saliva as a diagnostic tool has been explored in several oral and systemic diseases. The use of proteomics for personalized medicine is a rapidly emerging field. (2) Salivary proteomic data of 36 healthy controls (HCs), 36 AIH and 36 PBC patients, obtained by liquid chromatography/mass spectrometry top-down pipeline, were analyzed by multiple Mann—Whitney test, Kendall correlation, Random Forest (RF) analysis and Linear Discriminant Analysis (LDA); (3) Mann—Whitney tests provided indications on the panel of differentially expressed salivary proteins and peptides, namely cystatin A, statherin, histatin 3, histatin 5 and histatin 6, which were elevated in AIH patients with respect to both HCs and PBC patients, while S100A12, S100A9 short, cystatin S1, S2, SN and C showed varied levels in PBC with respect to HCs and/or AIH patients. RF analysis evidenced a panel of salivary proteins/peptides able to classify with good accuracy PBC vs. HCs (83.3%), AIH vs. HCs (79.9%) and PBC vs. AIH (80.2%); (4) RF appears to be an attractive machine-learning tool suited for classification of AIH and PBC based on their different salivary proteomic profiles.
In this review, we extensively describe the main post-translational modifications that give rise to the multiple proteoforms characterized to date in the human salivary proteome and their potential role. Most of the data reported were obtained by our group in over twenty-five years of research carried out on human saliva mainly by applying a top-down strategy. In the beginning, we describe the products generated by proteolytic cleavages, which can occur before and after secretion. In this section, the most relevant families of salivary proteins are also described. Next, we report the current information concerning the human salivary phospho-proteome and the limited news available on sulfo-proteomes. Three sections are dedicated to the description of glycation and enzymatic glycosylation. Citrullination and N- and C-terminal post-translational modifications (PTMs) and miscellaneous other modifications are described in the last two sections. Results highlighting the variation in the level of some proteoforms in local or systemic pathologies are also reviewed throughout the sections of the manuscript to underline the impact and relevance of this information for the development of new diagnostic biomarkers useful in clinical practice.
Cystatin B is a small, multifunctional protein involved in the regulation of inflammation, innate immune response, and neuronal protection and found highly abundant in the brains of patients with Alzheimer’s disease (AD). Recently, our study demonstrated a significant association between the level of salivary cystatin B and AD. Since the protein is able to establish protein-protein interaction (PPI) in different contexts and aggregation-prone proteins and the PPI networks are relevant for AD pathogenesis, and due to the relevance of finding new AD markers in peripheral biofluids, we thought it was interesting to study the possible involvement of cystatin B in PPIs in saliva and to evaluate differences and similarities between AD and age-matched elderly healthy controls (HC). For this purpose, we applied a co-immunoprecipitation procedure and a bottom-up proteomics analysis to purify, identify, and quantify cystatin B interactors. Results demonstrated for the first time the existence of a salivary cystatin B-linked multi-protein complex composed by 82 interactors and largely expressed in the body. Interactors are involved in neutrophil activation, antimicrobial activity, modulation of the cytoskeleton and extra-cellular matrix (ECM), and glucose metabolism. Preliminary quantitative data showed significantly lower levels of triosophosphate isomerase 1 and higher levels of mucin 7, BPI, and matrix Gla protein in AD with respect to HC, suggesting implications associated with AD of altered glucose metabolism, antibacterial activities, and calcification-associated processes. Data are available via ProteomeXchange with identifiers PXD039286 and PXD030679.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.