We study the drying and film formation of a model ternary system comprising an inorganic salt (aluminium chlorohydrate, ACH), a humectant (glycerol) and water. Employing viscometric, X-ray diffraction, calorimetric, dynamic vapour sorption, spectroscopic, gravimetric and adhesion measurements, we examine the roles of humectant concentration, temperature and relative humidity (RH) in the phase behaviour and kinetics of film formation. Equilibrium film compositions are found to be non-monotonic with glycerol content. Around 15:4 ACH:glycerol mass ratio, films exhibit enhanced, albeit slower, desiccation, with water content lower than that of binary ACH-water solutions. At higher glycerol content, drying is faster, yet the resulting films have higher water content and remain tackier. Water adsorption/desorption is shown to be fully reversible, and share a similar non-monotonic kinetic dependence on glycerol composition. These findings are rationalised in terms of the competitive binding of water and glycerol to ACH, the overall miscibility and glass formation within the ternary system. Our study is relevant to a range of salt formulations, employed in a variety of commercial applications, including lyoprotectants and personal care products.
We present a minimal model of solvent evaporation and absorption in thin films consisting of a volatile solvent and nonvolatile solutes. An asymptotic analysis yields expressions that facilitate the extraction of physically significant model parameters from experimental data, namely the mass transfer coefficient and composition-dependent diffusivity. The model can be used to predict the dynamics of drying and film formation, as well as sorption/desorption, over a wide range of experimental conditions. A state diagram is used to understand the experimental conditions that lead to the formation of a solute-rich layer, or "skin", at the evaporating surface during drying. In the case of solvent absorption, the model captures the existence of a saturation front that propagates from the film surface towards the substrate. The theoretical results are found to be in excellent agreement with data produced from dynamic vapour sorption experiments of ternary mixtures comprising an aluminum salt, glycerol, and water. Moreover, the model should be generally applicable to a variety of practical contexts, from paints and coatings, to personal care, packaging, and electronics.
We report a time-resolved approach to probe the mechanical properties of thin films during drying and solidification based on surface wrinkling. The approach is demonstrated by measuring the modulus of a ternary system comprising an inorganic salt (aluminium chlorohydrate), a humectant (glycerol) and water across the glassy film formation pathway. The topography of mechanicallyinduced wrinkling of supported films on polydimethylsiloxane (PDMS) is experimentally monitored during mechanical extension and relaxation cycles. Non-trivial aspects of our method include the need to oxidise the (hydrophobic) PDMS surface prior to solution deposition to enable surface wetting, which simultaneously creates a glassy-layer skin, whose wrinkling can contribute to the overall topography. Film drying is studied as a function of solution concentration and time, and a range of pattern morphologies are found: sinusoidal wrinkling, transient double-wavelength wrinkling accompanying film 'crust' formation, ridging associated with stress localization, and cracking. We quantify the evolution of the elastic modulus during the sinusoidal wrinkling stage, employing bi-and tri-layer models, which are independently confirmed by nano-indentation. The method provides thus a simple and robust approach for the mechanical characterization of out-of-equilibrium thin films.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.