Aspiration pneumonitis can lead to alveolar surfactant dysfunction. We employed a murine model of unilateral aspiration to compare surfactant synthesis in the injured (I) and noninjured (NI) contralateral lung. Mice were instilled with hydrochloric acid in the right bronchus and, after 18 h, an intraperitoneal dose of deuterated water was administered as precursor of disaturated phosphatidylcholine (DSPC)-palmitate. Selected bronchoalveolar lavage fluid (BALF) was collected at scheduled time points and lungs were removed. We measured DSPC-palmitate synthesis in lung tissue and secretion in BALF by gas chromatography-isotope ratio mass spectrometry, together with total proteins and myeloperoxidase activity (MPO) by spectrophotometry. BALF total proteins and MPO were significantly increased in the I lungs compared with NI and naïve control lungs. The DSPC pool size was significantly lower in the BALF of the I lungs compared with naïve controls. DSPC synthesis was accelerated in the I and NI lungs. DSPC secretion of the I lungs was similar to their respective naïve controls, and it was markedly lower compared with their respective NI contralateral lungs. DSPC synthesis and secretion were faster, especially in the NI lungs, compared with naïve control lungs, as a possible compensatory mechanism due to a cross-talk between the lungs triggered by inflammation, hyperventilation, and/or undetermined type II cell reaction to the injury.
Surfactant protein B (SP-B) plays a key role in surfactant homeostasis affecting its biophysical properties and physiological function. Recently, a method to measure SP-B amount and kinetics from tracheal aspirates (TAs) became available. The main objective of this study was to improve the critical steps of the procedure to obtain a better SP-B sensitivity. We administered a 24 h continuous infusion of 1 mg/kg/h of 1(13)C-leucine to ten newborn infants. SP-B was isolated from serial TAs and its fractional synthesis rate, secretion time, peak time and half life were derived from (13)C enrichment curves obtained by gas chromatography mass spectrometry. SP-B amount in TAs was also assessed. During the extraction step, acidification and organic solvent ratio optimization doubled the recovery of SP-B from TAs, so did the elongation of the propylation time (from 20 min to 1 h) with enhanced leucine derivatization yield. Measurement of (13)C leucine enrichments, and therefore all SP-B kinetics parameters, were successfully calculated in all TAs samples due to the increase of SP-B yield. SP-B amount was 0.29 (0.16-0.41) % of total phospholipids with a minimum value of 0.08% belonging to one of the respiratory distress syndrome (RDS) patients. In conclusion, this new procedure enables accurate determination of SP-B kinetics even in the presence of low protein amount like in preterm RDS patients.
Background: While surfactant protein composition of bronchoalveolar lavage (BAL) has been described in lung diseases of adults and premature infants, scanty data are available on surfactant protein composition beyond the neonatal period.
Abstractsby an ultrasensitive non-radioactive method on microplate and the TNFa protein expression by ELISA. Differences between the groups were determined by one way ANOVA (p<0.05). Results We observed a statistically significant decrease in the sPLA2 mRNA in the betamethasone (0.61) and dexamethasone (0.26) groups respect the control (1.05) group and a decrease in the sPLA2 activity in the betamethasone group (33.78) respect the control group (50.74). We observed a statistically significant decrease in the TNFa protein in the betamethasone group (472.61) respect the dexamethasone group (768.65). Conclusions Antenatal glucocorticoids inhibits the expression of sPLA2 through the reduction of TNFa in the lung of newborn rats. These potential beneficial effects are more evident in the group treated with antenatal betamethasone. Our studies also support the notion that betamethasone could be the drug of choice for treating pregnant women at risk of preterm delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.