Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
SUMMARYDuring very early stages of flower development in Arabidopsis thaliana, a series of key decisions are taken. Indeed, the position and the basic patterning of new flowers are determined in less than 4 days. Given that the scientific literature provides hard evidence for the function of only 10% of A. thaliana genes, we hypothesized that although many essential genes have already been identified, many poorly characterized genes are likely to be involved in floral patterning. In the current study, we use high-throughput sequencing to describe the transcriptome of the native inflorescence meristem, the floral meristem and the new flower immediately after the start of organ differentiation. We provide evidence that our experimental system is reliable and less affected by experimental artefacts than a widely used floral induction system. Furthermore, we show how these data can be used to identify candidate genes for functional studies, and to generate hypotheses of functional redundancies and regulatory interactions.
The REproductive Meristem (REM) gene family encodes for transcription factors belonging to the B3 DNA binding domain superfamily. In Arabidopsis thaliana, the REM gene family is composed of 45 members, preferentially expressed during flower, ovule, and seed developments. Only a few members of this family have been functionally characterized: VERNALIZATION1 (VRN1) and, most recently, TARGET OF FLC AND SVP1 (TFS1) regulate flowering time and VERDANDI (VDD), together with VALKYRIE (VAL) that control the death of the receptive synergid cell in the female gametophyte. We investigated the role of REM34, REM35, and REM36, three closely related and linked genes similarly expressed in both female and male gametophytes. Simultaneous silencing by RNA interference (RNAi) caused about 50% of the ovules to remain unfertilized. Careful evaluation of both ovule and pollen developments showed that this partial sterility of the transgenic RNAi lines was due to a postmeiotic block in both female and male gametophytes. Furthermore, protein interaction assays revealed that REM34 and REM35 interact, which suggests that they work together during the first stages of gametogenesis.
Understanding the interactions between nanoparticles (NPs) and proteins is crucial for the successful application of NPs in biological contexts. Protein adsorption is dependent on particle size, and protein binding to ultrasmall (1–3 nm) NPs is considered to be generally weak. However, most studies have involved structured biomacromolecules, while the interactions of ultrasmall NPs with intrinsically disordered proteins (IDPs) have remained elusive. IDPs are abundant in eukaryotes and found to associate with NPs intracellularly. As a model system, we focused on ultrasmall gold nanoparticles (usGNPs) and tau, a cytosolic IDP associated with Alzheimer’s disease. Using site-resolved NMR, steady-state fluorescence, calorimetry, and circular dichroism, we reveal that tau and usGNPs form stable multimolecular assemblies, representing a new type of nano–bio interaction. Specifically, the observed interaction hot spots explain the influence of usGNPs on tau conformational transitions, with implications for the intracellular targeting of aberrant IDP aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.