Puberty is a critical phase of life associated with physiological changes related to sexual maturation, and represents a complex process regulated by multiple endocrine and genetic controls. Puberty is driven by hormones, and it can impact the gut microbiome (GM). GM differences between sex emerge at puberty onset, confirming a relationship between microbiota and sex hormones. In this narrative review, we present an overview of precocious pubertal development and the changes in the GM in precocious puberty (PP) in order to consider the role of the sex hormone–gut microbiome axis from the perspective of pediatric endocrinology. Bidirectional interactions between the GM and sex hormones have been proposed in different studies. Although the evidence on the interaction between microbiota and sex hormones remains limited in pediatric patients, the evidence that GM alterations may occur in girls with central precocious puberty (CPP) represents an interesting finding for the prediction and prevention of PP. Deepening the understanding of the connection between the sex hormones and the role of microbiota changes can lead to the implementation of microbiota-targeted therapies in pubertal disorders by offering a pediatric endocrinology perspective.
Childhood obesity is characterized by an increased risk of several metabolic derangements including insulin resistance (IR). The strongest recommendations to prevent obesity and related complications are a balanced and adequate diet and practicing physical activity from early childhood. In this review, we propose to present the effects of healthy lifestyle strategies, including physical exercise and dietary approaches, on the management of IR and related metabolic derangements. All types of exercise (aerobic, resistance and combined training) effectively reduce IR in pediatric patients with obesity; it seems that aerobic and combined training stimulate greater improvements in IR compared to resistance training. Balanced normocaloric or hypocaloric dietary approaches are also valid strategies to address IR; it is not possible to assess the long-term impact of varying macronutrients on cardiometabolic risk. The glycemic index/load evaluation is a useful dietary approach to glucose metabolism control. Similarly, they should adopt the principle of the Mediterranean diet. Randomized studies with longer monitoring are needed to define the benefits of nutritional supplementation on IR. Considering that healthy style acquisition could track to later ages, programs of healthy lifestyle starting with children offer a better preventive strategy to preserve metabolic control and children’s health.
Polycystic ovary syndrome (PCOS) affects a considerable percentage of females of reproductive age. PCOS is an obesity-related condition and its effects are greatly amplified by obesity. Even though the pathogenesis of PCOS remains complex and has not been fully elucidated, a link between obesity, PCOS, and dysbiosis has been described. The potential role of the gut microbiota in the development and progression of PCOS and its associated symptoms has also been reported. The aim of this narrative review is to present a non-systematic analysis of the available literature on the topic of probiotics and PCOS in adolescents with obesity in order to revise the beneficial effects of probiotics/symbiotic supplementation on hormonal and metabolic profiles and inflammatory conditions. The effectiveness of probiotics/synbiotics in PCOS has been supported. The literature suggests that probiotic/symbiotic supplementation may ameliorate hormonal profiles, inflammatory indicators, and lipid metabolism disturbances caused by PCOS. Studies also show improvements in weight, BMI, insulin, and HOMA-IR, including a potential role it plays in protecting fertility. Even though further studies are needed to confirm these findings, particularly in adolescent patients, probiotic supplementation may be considered a solution for managing PCOS in adolescents with obesity.
Iodine is an essential element for the production of thyroid hormones (THs). Both deficient and excess iodine intakes may precipitate in adverse thyroidal events. Radioactive iodine (RI) is a common byproduct of nuclear fission processes. During nuclear emergencies RI may be released in a plume, or cloud, contaminating the environment. If inhaled or ingested, it may lead to internal radiation exposure and the uptake of RI mainly by the thyroid gland that absorbs stable iodine (SI) and RI in the same way. A dose of radiation delivered to the thyroid gland is a main risk factor for the thyroid cancer development. The SI prophylaxis helps prevent childhood thyroid cancer. The thyroid gland saturation with prophylactic SI ingestion, reduces the internal exposure of the thyroid by blocking the uptake of RI and inhibiting iodide organification. However, negative impact of inadequate SI intake must be considered. We provide an overview on the recommended iodine intake and the impact of SI and RI on thyroid in children and adolescents, discussing the benefits and adverse effects of the prophylactic SI for thyroid blocking during a nuclear accident. The use of SI for protection against RI may be recommended in cases of radiological or nuclear emergencies, moreover the administration of iodine for prophylactic purposes should be cautious. Benefits and risks should also be considered according to age. Adverse effects from iodine administration cannot be excluded. Precise indications are mandatory to use the iodine for thyroid blocking. Due to this natural adaption mechanism it’s possible to tolerate large doses of iodine without clinical effects, however, a prolonged assumption of the iodine when not needed can be dangerous and may precipitate in severe thyroidal and non-thyroidal negative effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.