Pathogenesis induced by SARS-CoV-2 is thought to result from both an inflammation dominated cytokine response and virus-induced cell perturbation causing cell death. Here, we employ an integrative imaging analysis to determine morphological organelle alterations induced in SARS-CoV-2 infected human lung epithelial cells. We report 3D electron microscopy reconstructions of whole-cells and subcellular compartments, revealing extensive fragmentation of the Golgi apparatus, alteration of the mitochondrial network and recruitment of peroxisomes to viral replication organelles formed by clusters of double-membrane vesicles (DMVs). These are tethered to the endoplasmic reticulum, providing insights into DMV biogenesis and spatial coordination of SARS-CoV-2 replication. Live cell imaging combined with an infection sensor reveals profound remodeling of cytoskeleton elements. Pharmacological inhibition of their dynamics suppresses SARS-CoV-2 replication. We thus report insights into virus-induced cytopathic effects, and provide alongside a comprehensive publicly available repository of 3D data-sets of SARS-CoV-2 infected cells for download and smooth online visualization.
Redox active self-assembled monolayers inherently possess both electrochemically addressable and polarizable components. The latter will contribute, with additional parasitic terms, to the iR drop effects within any form of electronic analysis, potentially distorting results. A capacitive analysis of such interfaces (Electroactive Monolayer Capacitance Spectroscopy), presented here, enables a clean mapping of both the thermodynamic and kinetic faradaic characteristics in a single experimental run, with parasitic nonfaradaic contributions (polarization and resistance terms) both spectrally resolved and cleanly removed. The methodology enables a rapid and undistorted quantification of accessible redox site density of states (reported directly by redox capacitance), molecular surface coverage, electron transfer kinetics, and reorganization energies with comparatively little experimental effort. Exemplified here with electroactive copper protein and ferrocene films the approach is equally applicable to any redox active interface.
Sponges and evolutionary origins
Sponges represent our distant animal relatives. They do not have a nervous system but do have a simple body for filter feeding. Surveying the cell types in the freshwater sponge
Spongilla lacustris
, Musser
et al
. found that many genes important in synaptic communication are expressed in cells of the small digestive chambers. They found secretory machinery characteristic of the presynapse in small multipolar cells contacting all other cells and also the receptive apparatus of the postsynapse in the choanocytes that generate water flow and digest microbial food. These results suggest that the first directed communication in animals may have evolved to regulate feeding, serving as a starting point on the long path toward nervous system evolution. —BAP
Lipid droplets (LDs) are fat storage organelles that originate from the endoplasmic reticulum (ER). Relatively little is known about how sites of LD formation are selected and which proteins/lipids are necessary for the process. Here, we show that LDs induced by the yeast triacylglycerol (TAG)-synthases Lro1 and Dga1 are formed at discrete ER subdomains defined by seipin (Fld1), and a regulator of diacylglycerol (DAG) production, Nem1. Fld1 and Nem1 colocalize to ER–LD contact sites. We find that Fld1 and Nem1 localize to ER subdomains independently of each other and of LDs, but both are required for the subdomains to recruit the TAG-synthases and additional LD biogenesis factors: Yft2, Pex30, Pet10, and Erg6. These subdomains become enriched in DAG. We conclude that Fld1 and Nem1 are both necessary to recruit proteins to ER subdomains where LD biogenesis occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.