Background: The efficacy of CB-103 was evaluated in preclinical models of both ER+ and TNBC. Furthermore, the therapeutic efficacy of combining CB-103 with fulvestrant in ER+ BC and paclitaxel in TNBC was determined. Methods: CB-103 was screened in combination with a panel of anti-neoplastic drugs. We evaluated the anti-tumor activity of CB-103 with fulvestrant in ESR1-mutant (Y537S), endocrine-resistant BC xenografts. In the same model, we examined anti-CSC activity in mammosphere formation assays for CB-103 alone or in combination with fulvestrant or palbociclib. We also evaluated the effect of CB-103 plus paclitaxel on primary tumors and CSC in a GSI-resistant TNBC model HCC1187. Comparisons between groups were performed with a two-sided unpaired Students’ t-test. A one-way or two-way ANOVA followed by Tukey’s post-analysis was performed to analyze the in vivo efficacy study results. The results: CB-103 showed synergism with fulvestrant in ER+ cells and paclitaxel in TNBC cells. CB-103 combined with fulvestrant or paclitaxel potently inhibited mammosphere formation in both models. Combination of CB-103 and fulvestrant significantly reduced tumor volume in an ESR1-mutant, the endocrine-resistant BC model. In a GSI-resistant TNBC model, CB-103 plus paclitaxel significantly delayed tumor growth compared to paclitaxel alone. Conclusion: our data indicate that CB-103 is an attractive candidate for clinical investigation in endocrine-resistant, recurrent breast cancers with biomarker-confirmed Notch activity in combination with SERDs and/or CDKis and in TNBCs with biomarker-confirmed Notch activity in combination with taxane-containing chemotherapy regimens.
A critical feature of cancer is the ability to induce immunosuppression and evade immune responses. Tumor-induced immunosuppression diminishes the effectiveness of endogenous immune responses and decreases the efficacy of cancer immunotherapy. In this study, we describe a new immunosuppressive pathway in which adenosine promotes Casitas B-lineage lymphoma b (Cbl-b)-mediated Notch1 degradation, causing suppression of CD8+ T-cells effector functions. Genetic knockout and pharmacological inhibition of Cbl-b prevents Notch1 degradation in response to adenosine and reactivates its signaling. Reactivation of Notch1 results in enhanced CD8+ T-cell effector functions, anti-cancer response and resistance to immunosuppression. Our work provides evidence that targeting the Cbl-b-Notch1 axis is a novel promising strategy for cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.