Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Staphylococcus aureus is a commensal bacterium that has the ability to cause superficial and deep-seated infections. Like several other invasive pathogens, S. aureus can capture plasminogen from the human host where it can be converted to plasmin by host plasminogen activators or by endogenously expressed staphylokinase. This study demonstrates that sortase-anchored cell wall-associated proteins are responsible for capturing the bulk of bound plasminogen. Two cell wall-associated proteins, the fibrinogen-and fibronectin-binding proteins A and B, were found to bind plasminogen, and one of them, FnBPB, was studied in detail. Plasminogen captured on the surface of S. aureusor Lactococcus lactis-expressing FnBPB could be activated to the potent serine protease plasmin by staphylokinase and tissue plasminogen activator. Plasminogen bound to recombinant FnBPB with a K D of 0.532 M as determined by surface plasmon resonance. Plasminogen binding did not to occur by the same mechanism through which FnBPB binds to fibrinogen. Indeed, FnBPB could bind both ligands simultaneously indicating that their binding sites do not overlap. The N3 subdomain of FnBPB contains the full plasminogen-binding site, and this includes, at least in part, two conserved patches of surface-located lysine residues that were recognized by kringle 4 of the host protein.
In this study, we investigated the cell wall-anchored fibronectin-binding proteins SpsD and SpsL from the canine commensal and pathogen Staphylococcus pseudintermedius for their role in promoting bacterial invasion of canine progenitor epidermal keratinocytes (CPEK). Invasion was examined by the gentamicin protection assay and fluorescence microscopy. An ⌬spsD ⌬spsL mutant of strain ED99 had a dramatically reduced capacity to invade CPEK monolayers, while no difference in the invasion level was observed with single mutants. Lactococcus lactis transformed with plasmids expressing SpsD and SpsL promoted invasion, showing that both proteins are important. Soluble fibronectin was required for invasion, and an RGD-containing peptide or antibodies recognizing the integrin ␣ 5  1 markedly reduced invasion, suggesting an important role for the integrin in this process. Src kinase inhibitors effectively blocked internalization, suggesting a functional role for the kinase in invasion. In order to identify the minimal fibronectin-binding region of SpsD and SpsL involved in the internalization process, recombinant fragments of both proteins were produced. The SpsD 520 -846 and SpsL 538 -823 regions harboring the major fibronectin-binding sites inhibited S. pseudintermedius internalization. Finally, the effects of staphylococcal invasion on the integrity of different cell lines were examined. Because SpsD and SpsL are critical factors for adhesion and invasion, blocking these processes could provide a strategy for future approaches to treating infections.
Staphylococcus aureus is a Gram-positive bacterium that can cause both superficial and deep-seated infections. Histones released by neutrophils kill bacteria by binding to the bacterial cell surface and causing membrane damage. We postulated that cell wall-anchored proteins protect S. aureus from the bactericidal effects of histones by binding to and sequestering histones away from the cell envelope. Here, we focused on S. aureus strain LAC and by using an array of biochemical assays, including surface plasmon resonance and ELISA, discovered that fibronectin-binding protein B (FnBPB) is the main histone receptor. FnBPB bound all types of histones, but histone H3 displayed the highest affinity and bactericidal activity and was therefore investigated further. H3 bound specifically to the A domain of recombinant FnBPB with a K D of 86 nM, ϳ20-fold lower than that for fibrinogen. Binding apparently occurred by the same mechanism by which FnBPB binds to fibrinogen, because FnBPB variants defective in fibrinogen binding also did not bind H3. An FnBPB-deletion mutant of S. aureus LAC bound less H3 and was more susceptible to its bactericidal activity and to neutrophil extracellular traps, whereas an FnBPBoverexpressing mutant bound more H3 and was more resistant than the WT. FnBPB bound simultaneously to H3 and plasminogen, which after activation by tissue plasminogen activator cleaved the bound histone. We conclude that FnBPB provides a dual immune-evasion function that captures histones and prevents them from reaching the bacterial membrane and simultaneously binds plasminogen, thereby promoting its conversion to plasmin to destroy the bound histone. Staphylococcus aureus is a leading cause of diverse infections ranging from mild skin diseases such as impetigo, cellulitis, and skin abscesses to serious invasive diseases, including sepsis, endocarditis, osteomyelitis, toxic shock syndrome, and necro-tizing pneumoniae (1, 2). Strains that are resistant to multiple antibiotics are a major problem in healthcare settings in developed countries (3). These are referred to as hospital-associated methicillin-resistant S. aureus (MRSA) 3 and occur in individuals with pre-disposing risk factors, such as surgical wounds and indwelling medical devices (4, 5). Recently, there has been a dramatic increase in the incidence of community-associated MRSA infections that occur in otherwise healthy individuals (6, 7). Community-associated MRSA strains, exemplified by the USA300 clone (8), express a low level of resistance to -lactam antibiotics and cause serious skin and soft tissue infections (9-11). S. aureus expresses a plethora of virulence factors, including both secreted and cell wall-anchored (CWA) proteins. The latter mediate adherence to the extracellular matrix, promote invasion of and survival within host cells, neutralize phagocytes, and modulate the immune response (12). CWA proteins are covalently anchored to peptidoglycan via a conserved C-terminal sorting signal mediated by the membrane-associated sortase A (13). Fibronec...
A rapid and sensitive real time reverse transcription-PCR (RT-PCR) assay based on SYBR Green I chemistry was developed for the quantitative detection of Citrus viroid III (CVd-III) in citrus samples. CVd-III titre was determined at different times in green bark of sour orange, Troyer citrange, trifoliate orange and alemow seedlings inoculated with a CVd-IIIb source. Ten weeks after inoculation the viroid was detected in the four species, without substantial differences in viroid titre among them. Nine weeks later an overall increase of viroid titre was observed. The copy number of CVd-III in sour orange and Troyer citrange was monitored up to 52 weeks after inoculation and a further increase of viroid titre was observed at 35 weeks. For validation purposes, field samples were tested from 58 citrus trees with mixed infections of CVd-III, Citrus exocortis viroid (CEVd) and Hop stunt viroid (HSVd), as well as from healthy controls. Based on the sensitivity (100%), specificity (96·7%), accuracy (99·2%) and repeatability (Cohen's kappa index 0·98) of the assay, it is suggested that its employment in breeding programmes would be helpful in the evaluation of host resistance and viroid accumulation in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.