In the present study, an organic substrate (coffee silverskin) enriched with spirulina (Arthrospira platensis; 15% w/w), as a source of lipids and bioactive molecules, was used to rear the black soldier fly (Hermetia illucens) prepupae. Three grossly isonitrogenous, isoproteic, isolipidic and isoenergetic experimental diets for rainbow trout (Oncorhynchus mykiss) juveniles were then produced: a control diet (HM0) mostly including fish meal and fish oil, and two other test diets named HM3 and HM20, in which 3 or 20% of the marine ingredients were substituted with full fat black soldier fly prepupae meal (HM), respectively. Experimental diets were provided for 6 weeks, and at the end of the trial the physiological responses and marketable traits of the fish were investigated using a multidisciplinary approach. Generally, all test diets were well accepted, and fish growth, gut and liver health status, and marketable characteristics were not impaired by the experimental diets. However, an increased immuno-related gene expression along with a slight reduction of fillet redness and yellowness was evident in fish from the HM20 group.
Microalgae have been used as live food in aquatic species. In recent years, the interest in microalgae has considerably increased, thanks to the evolution of production techniques that have identified them as an ecologically attractive aquafeed ingredient. The present study provides the first data about the effects of dietary inclusion of a microalgae consortium grown in a high-rate algal pond system on zootechnical performance, morphometric indices, and dietary nutrient digestibility as well as morphology and functionality of the digestive system of European sea bass, Dicentrarchus labrax. A dietary treatment including a commercial mono-cultured microalgae (Nannochloropsis sp.) biomass was used for comparison. Six hundred and thirty-six European sea bass juveniles (18 ± 0.28 g) were randomly allotted into 12 experimental groups and fed 4 different diets for 10 weeks: a control diet based on fish meal, fish oil, and plant protein sources; a diet including 10% of Nannochloropsis spp. biomass (100 g/kg diet); and two diets including two levels (10% and 20%) of the microalgal consortium (100 and 200 g/kg diet). Even at the highest dietary inclusion level, the microalgal consortium (200 g/kg diet) did not affect feed palatability and fish growth performance. A significant decrease in the apparent digestibility of dry matter, protein, and energy was observed in diets including 10 and 20% of the microalgal consortium, but all fish exhibited a well-preserved intestinal histomorphology. Moreover, dietary inclusion with the microalgal consortium significantly increased the enzymatic activity of maltase, sucrase-isomaltase, and ɤ-glutamil transpeptidase in the distal intestine of the treated European sea bass. Algal consortium grown using fish farm effluents represents an attempt to enhance the utilization of natural biomasses in aquafeeds when used at 10 % as substitute of vegetable ingredients in diet for European sea bass.
The aim of the present work was to investigate the influence of fasting and refeeding on body condition, gut physiology and microbiota in reared O. mykiss. Ninety-six fish were randomly allotted among three groups subjected to different feeding plan: C (control, fed for 5 weeks); R (restricted ration over 3 weeks followed by 2 weeks feeding); F (fasted over 3 weeks followed by 2 weeks feeding) in a well’s fresh water flow-through rearing plan. Sampling occurred at 0, 1, 2, 4, 7, 14 days during the refeeding period. At day 0 and throughout the feeding period until day 14, the weight of the fish was significantly affected by the feeding restriction. Feed deprivation reduced significantly the viscerosomatic and hepatosomatic indexes. Brush border membrane enzymes’ specific activity was modulated by feeding regimes until day 7, to level in all experimental groups at day 14. At the end of the restricted/fasted period, the microbiota of the C group was made up of 70% of Actinobacteria, 24% of Proteobacteria, 4.2% of Firmicutes and < 1% of Bacteroides, while the restricted and fasted group were characterized by a strong reduction of Actinobacteria, and a significant increase in Bacteroidetes and Firmicutes. The feed deprivation determined a dysbiosis, allowing the development of different commensal or pathogenic bacteria. In conclusion, the effects of 2 weeks of feed deprivation, excluding those related to body weight, are gradually mitigated by refeeding, which allows the restoration of digestive functions and a healthy intestinal microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.