Sn-Beta has emerged as a state-of-the-art catalyst for a range of sustainable chemical transformations. Conventionally prepared by bottom-up hydrothermal synthesis methods, recent research has demonstrated the efficiency of several top-down...
Due to their chemical, physical, and biological properties, fluorinated compounds are widely employed throughout society. Yet, despite their critical importance, current methods of introducing fluorine into compounds suffer from severe drawbacks. For example, several methods are noncatalytic and employ stoichiometric equivalents of heavy metals. Existing catalytic methods, on the other hand, exhibit poor activity, generality, selectivity and/or have not been achieved by heterogeneous catalysis, despite the many advantages such an approach would provide. Here, we demonstrate how selective C(sp 3 )−F bond synthesis can be achieved via heterogeneous photocatalysis. Employing TiO 2 as photocatalyst and Selectfluor as mild fluorine donor, effective decarboxylative fluorination of a variety of carboxylic acids can be achieved in very short reaction times. In addition to displaying the highest turnover frequencies of any reported fluorination catalyst to date (up to 1050 h −1 ), TiO 2 also demonstrates excellent levels of durability, and the system is catalytic in the number of photons required; i.e., a photon efficiency greater than 1 is observed. These factors, coupled with the generality and mild nature of the reaction system, represent a breakthrough toward the sustainable synthesis of fluorinated compounds.
Increasing demand for fluorine-containing compounds has led to a surge in the development of processes targeting the synthesis of alkyl fluorides. Catalytic methods of fluorination represent an efficient strategy to...
Porous silicates containing dilute amounts of tri-, tetra- and penta-valent metal sites, such as TS-1, Sn-β and Fe-ZSM-5, have recently emerged as state of the art catalysts for a variety of sustainable chemical transformations. In contrast with their aluminosilicate cousins, which are widely employed throughout the refinery industry for gas-phase catalytic transformations, such metallosilicates have exhibited unprecedented levels of performance for a variety of liquid-phase catalytic processes, including the conversion of biomass to chemicals, and sustainable oxidation technologies with H2O2. However, despite their unique levels of performance for these new types of chemical transformations, increased utilization of these promising materials is complicated by several factors. For example, their utilization in a liquid, and often polar, medium hinders process intensification (scale-up, catalyst deactivation). Moreover, such materials do not generally exhibit the active-site homogeneity of conventional aluminosilicates, and they typically possess a wide variety of active-site ensembles, only some of which may be directly involved in the catalytic chemistry of interest. Consequently, mechanistic understanding of these catalysts remains relatively low, and competitive reactions are commonly observed. Accordingly, unified approaches towards developing more active, selective and stable porous metallosilicates have not yet been achieved. Drawing on some of the most recent literature in the field, the purpose of this mini review is both to highlight the breakthroughs made with regard to the use of porous metallosilicates as heterogeneous catalysts for liquid-phase processing, and to highlight the pertaining challenges that we, and others, aim to overcome during the forthcoming years.
Although the selective oxidation of alcohols to carbonyl compounds is a critical reaction, it is often plagued by several challenges related to sustainability. Here, the continuous, acceptorless dehydrogenation of alcohols to carbonyl compounds over heterogeneous catalysts was demonstrated, in the absence of oxidants, bases or acceptor molecules. In addition to improving selectivity and atom efficiency, the absence of an acceptor resulted in the co‐production of molecular H2, a clean energy source, and permitted dehydrogenation to proceed at >98 % selectivity at turnover frequency values amongst the highest in the literature. Moreover, excellent durability was observed during continuous operation over 48 h, reaching space‐time yields of 0.683 g(product) mL−1 h−1, better than the state of the art by over two orders of magnitude. Alongside these breakthroughs, the basic kinetic parameters of the reaction were also determined, allowing some of the elementary reaction steps to be identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.