This paper presents a novel cascaded multilevel converter topology with reconfigurable battery modules able to merge the power conversion and the battery management functionalities for electric powertrain application. In the proposed topology, each battery cell can be individually connected or bypassed according to the required voltage and current levels. Both the charging and discharging processes can be controlled to avoid voltage imbalances between the cells and to enhance fault tolerance, battery life, and safety. Converter switching and conduction losses are evaluated and used as key parameters for the optimization of the proposed architecture. Furthermore, an efficiency comparison between a conventional three-phase IGBT-based inverter and the proposed topology is carried out. The two topologies are evaluated according to the WLTP Class 3 driving cycles, showing their average efficiency in each cycle. The comparison results show that the performance achieved with the proposed topology is extremely promising to combine state-of-the-art functionalities with the new paradigm of battery management.
In this paper, we address the problem of automating the definition of feasible pallets configurations. This issue is crucial for the competitiveness of logistic companies and is still one of the most difficult problems in internal logistics. In fact, it requires the fast solution of a three-dimensional Bin Packing Problem (3D-BPP) with additional logistic specifications that are fundamental in real applications. To this aim, we propose a matheuristics that, given a set of items, provides feasible pallets configurations that satisfy the practical requirements of items' grouping by logistic features, load bearing, stability, height homogeneity, overhang as well as weight limits, and robotized layer picking. The proposed matheuristics combines a mixed integer linear programming (MILP) formulation of the 3D-Single Bin-Size BPP (3D-SBSBPP) and a layer building heuristics. In particular, the feasible pallets configurations are obtained by sequentially solving two MILP sub-problems: the first, given the set of items to be packed, aims at minimizing the unused space in each layer and thus the number of layers; the latter aims at minimizing the number of shipping bins given the set of layers obtained from the first problem. The approach is extensively tested and compared with existing approaches. For its validation we use both realistic data-sets drawn from the literature and real data-sets, obtained from an Italian logistics leader. The resulting outcomes show the effectiveness of the method in providing high-quality bin configurations in short computational times. Note to Practitioners-This work is motivated by the intentionof facilitating the transition from Logistics 3.0 to Logistics 4.0 by providing an effective tool to automate bin packing, suitable for automated warehouses. On the one hand, the proposed technique provides stable and compact bin configurations in less than half a minute per bin on average, despite the high computational complexity of the 3D-SBSBPP. On the other hand, the approach allows to consider compatibility constraints for the items (e.g., final customer and category of the items), and the use of robotized layer picking in automated warehouses. In effect, layers composed by only one type of items (i.e., monoitem layers) can be directly picked and placed on the pallet by a robotic arm without the intervention of any operator. Consequently, the adoption of this approach in warehouses could drastically improve the efficiency of the packing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.