Background: Liver metastases are a leading cause of cancer-associated deaths in patients affected by colorectal cancer (CRC). The multidisciplinary strategy to treat CRC is more effective when the radiological diagnosis is accurate and early. Despite the evolving technologies in radiological accuracy, the radiological diagnosis of Colorectal Cancer Liver Metastases (CRCLM) is still a key point. The aim of our study was to define a new patient representation different by Artificial Intelligence models, using Formal Methods (FMs), to help clinicians to predict the presence of liver metastasis when still undetectable using the standard protocols. Methods: We retrospectively reviewed from 2013 to 2020 the CT scan of nine patients affected by CRC who would develop liver lesions within 4 months and 8 years. Seven patients developed liver metastases after primary staging before any liver surgery, and two patients were enrolled after R0 liver resection. Twenty-one patients were enrolled as the case control group (CCG). Regions of Interest (ROIs) were identified through manual segmentation on the medical images including only liver parenchyma and eventual benign lesions, avoiding major vessels and biliary ducts. Our predictive model was built based on formally verified radiomic features. Results: The precision of our methods is 100%, scheduling patients as positive only if they will be affected by CRCLM, showing a 93.3% overall accuracy. Recall was 77.8%. Conclusion: FMs can provide an effective early detection of CRCLM before clinical diagnosis only through non-invasive radiomic features even in very heterogeneous and small clinical samples.
Considering the current pandemic, caused by the spreading of the novel Coronavirus disease, there is the urgent need for methods to quickly and automatically diagnose infection. To assist pathologists and radiologists in the detection of the novel coronavirus, in this paper we propose a two-tiered method, based on formal methods (to the best of authors knowledge never previously introduced in this context), aimed to (i) detect whether the patient lungs are healthy or present a generic pulmonary infection; (ii) in the case of the previous tier, a generic pulmonary disease is detected to identify whether the patient under analysis is affected by the novel Coronavirus disease. The proposed approach relies on the extraction of radiomic features from medical images and on the generation of a formal model that can be automatically checked using the model checking technique. We perform an experimental analysis using a set of computed tomography medical images obtained by the authors, achieving an accuracy of higher than 81% in disease detection.
Objective Soft-tissue sarcomas (STSs) of the extremities are a group of malignancies arising from the mesenchymal cells that may develop distant metastases or local recurrence. In this article, we propose a novel methodology aimed to predict metastases and recurrence risk in patients with these malignancies by evaluating magnetic resonance radiomic features that will be formally verified through formal logic models. Materials and Methods This is a retrospective study based on a public dataset evaluating MRI scans T2-weighted fat-saturated or short tau inversion recovery and patients having “metastases/local recurrence” (group B) or “no metastases/no local recurrence” (group A) as clinical outcomes. Once radiomic features are extracted, they are included in formal models, on which is automatically verified the logic property written by a radiologist and his computer scientists coworkers. Results Evaluating the Formal Methods efficacy in predicting distant metastases/local recurrence in STSs (group A vs group B), our methodology showed a sensitivity and specificity of 0.81 and 0.67, respectively; this suggests that radiomics and formal verification may be useful in predicting future metastases or local recurrence development in soft tissue sarcoma. Discussion Authors discussed about the literature to consider Formal Methods as a valid alternative to other Artificial Intelligence techniques. Conclusions An innovative and noninvasive rigourous methodology can be significant in predicting local recurrence and metastases development in STSs. Future works can be the assessment on multicentric studies to extract objective disease information, enriching the connection between the radiomic quantitative analysis and the radiological clinical evidences.
Soft tissue sarcomas (STSs) are rare, heterogeneous, and very often asymptomatic diseases. Their diagnosis is fundamental, as is the identification of the degree of malignancy, which may be high, medium, or low. The Italian Medical Oncology Association and European Society of Medical Oncology (ESMO) guidelines recommend magnetic resonance imaging (MRI) because the clinical examination is typically ineffective. The diagnosis of these rare diseases with artificial intelligence (AI) techniques presents reduced datasets and therefore less robust methods. However, the combination of AI techniques with radiomics may be a new angle in diagnosing rare diseases such as STSs. Results obtained are promising within the literature, not only for the performance but also for the explicability of the data. In fact, one can make tumor classification, site localization, and prediction of the risk of developing metastasis. Thanks to the synergy between computer scientists and radiologists, linking numerical features to radiological evidence with excellent performance could be a new step forward for the diagnosis of rare diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.