This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance.
Homocysteine induces oxidative stress in human platelets in vitro. The unbalance in platelet redox-state and the increased TXB2 formation may generate hyperactivation, contributing to a thrombogenic state leading to cardiovascular diseases.
Hyperhomocysteinemia is considered a risk factor in arterial and venous thrombosis. The mechanism by which homocysteine (HCy) supports atherothrombosis is still unknown and may be multifactorial. Earlier in vitro studies demonstrated that HCy induced arachidonic acid release and increased thromboxane B2 (TXB2) formation. In this work, we found that HCy stimulated the rapid and sustained phosphorylation of platelet p38 mitogen-activated protein kinase (p38 MAPK). The effect was time- and dose-dependent. The HCy effect on p38 MAPK phosphorylation was prevented by N-acetyl-L-cysteine and iloprost and was partially inhibited by nordihydroguaiaretic acid. Moreover, the incubation of platelets with HCy led to the phosphorylation of cytosolic phospholipase A2 (cPLA2). In addition HCy promoted cPLA2 activation, assessed as arachidonic acid release. The cPLA2 phosphorylation and activation were both impaired by the inhibition of p38 MAPK through SB203580. This effect was not complete, reaching at the most the 50% of the total. In FURA 2-loaded platelets, HCy induced a dose-dependent intracellular calcium rise suggesting that the calcium elevation promoted by HCy could participate in the cPLA2 activation, leading to arachidonic acid release and TXB2 formation. In conclusion, our data provide insight into the mechanisms of platelet activation induced by HCy, suggesting that the p38 MAPK/cPLA2 pathway could play a relevant role in platelet hyperactivity described in hyperhomocysteinemia.
The production of hydrogen peroxide was measured by following the oxidation of dichlorofluorescein (DCFH) entrapped into platelets. Resting platelets produced nanomolar quantities of DCF, which was proportional to the concentration of platelets and was steady during 1 h of incubation. A significant increase of basal DCF fluorescence was induced by stimuli namely thrombin, arachidonic acid, the Ca2+ ionophore A23187 and PMA. The effect of agonists has been also measured in the presence of 3-amino-1,2,4-triazole (AT) or N-ethylmaleimide (NEM), inhibitors of catalase and glutathione peroxidase, respectively. A further significant enhancement of DCF produced in stimulated platelets was detected only in the presence of NEM. A correlation was found between the increase in DCF and externally added hydrogen peroxide or the oxidizing species formed by xanthine oxidase plus acetaldehyde. The yield was not affected by superoxide dismutase and was higher in the presence of AT or NEM. A cooperative effect in the presence of both inhibitors was shown. Glutathione peroxidase plus glutathione diminished the level of DCF to basal levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.